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1. Introduction

Understanding the role played by the Green-Schwarz (GS) and Wess-Zumino (WZ) mech-

anisms in quantum field theory is important in order to grasp the implications of the chiral

gauge anomaly at the level of model building, especially in the search of extra trilinear

gauge interactions at future colliders. In recent years several proposals coming either from

string theory or from theories with extra dimensions have introduced new perspectives in

regard to the various mechanisms of cancellation of the gauge anomalies in effective low

energy lagrangeans, which require further investigation in order to be fully understood.

These effective models are characterized by the presence of higher dimensional operators

and interactions of axion-like particles. In a class of vacua of string theory this enterprise

has some justification, for instance in orientifold models (see [1 – 3]), where deviations from

the Standard Model may appear in the form of higher dimensional corrections which are

not heavily suppressed and which could be accessible at the LHC.

In anomaly-free realizations of chiral gauge theories the trilinear anomalous gauge

interactions vanish (identically) in the chiral limit, by a suitable distribution of charges

among the fermions of each generation (or inter-generational), showing that residual in-

teractions are proportional to the mass differences of the various fermions. In the GS

realization this request is far more relaxed and the mechanism requires only the cancel-

lation, in the presence of anomalous contributions, of the longitudinal component of the

anomaly vertex rather than that of the entire triangle diagram. In the WZ case, the can-

cellation of the anomaly takes place at lagrangean level, rather than at the vertex level,

and requires an axion as an asymptotic state, which is a generalization of the Peccei-Quinn

(PQ) interaction.

The effective field theory of the WZ mechanism has been analyzed in [4 – 9], together

with its supersymmetric extensions [10] while a string derivation of the GS constructions has

been outlined in [11]. Pseudoscalar fields (axion-like particles) - with a mass and a coupling

to gauge fields which are left unrelated - have been the subject of several investigations and

proposals for their detection either in ground-based experiments [12] or to explain some

puzzling results on gamma ray propagation [13, 14], while new solutions of the strong CP

problem in more general scenarios have also received attention [15]. At the same time

the search for extra Z ′ at the LHC from string models and extra dimensions, together

with precision studies on the resonance to uncover new effects, has also received a new

strength [16 – 21].

If the GS and the WZ mechanisms are bound to play any role at future experiments

(see for instance [22]) remains to be seen, given the very small numerical impact of the

anomaly corrections in the cleanest processes that can be studied, for instance, at the LHC;

nevertheless more analysis is needed in order to understand the theoretical implications of

“anomaly mediation” and of its various realizations, in the form of GS and WZ interactions,

in effective models.

Both mechanisms are quite tricky, since they show some unusual features which are not

common to the rest of anomaly-free field theories and it is not hard to find in the literature

several issues which have been debated for a long time, concerning the consistency of these
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approaches [23 – 25].

For instance, in the GS case, one of them concerns unitarity, due to the claimed pres-

ence of extra “double poles” [26] in a certain class of interactions which would render

completely invalid a perturbative prescription; another one concerns the physical inter-

pretation of the longitudinal subtraction, realized within the same mechanism, which is

usually interpreted as due to the exchange of an axion, which, however, as pointed out

in [8] is not an asymptotic state.

The first part of our investigation is a study of the organization of the perturbative

expansion for anomalous theories in the presence of counterterms containing double poles

in virtual corrections and, in principle, in s/t/u channel exchanges. Our point of view and

conclusions are in contradiction with those of [26], formulated within axial QED, where

the analysis of the anomaly pole counterterm was not taking into account the fact that the

subtracted term is an intrinsic part of the triangle (anomaly) diagram, corresponding to

one of its invariant amplitudes, in a specific formulation. We will come to a rather detailed

discussion of these subtle points.

The picture that emerges from our analysis is that of consistency -rather than of

inconsistency- of the GS mechanism at the level of effective field theory. In other words,

it should be possible to subtract the longitudinal pole of the anomaly diagram with no

further consequences at perturbative level. The structure of the perturbative expansion in

the presence of explicit GS counterterms is worked out in two sections and in an appendix,

where we detail the methods for the computations of graphs containing extra poles in the

propagators and compare the general features of this expansion to an ordinary expansion.

In any case, in the absence of a direct check of the unitarity equations -which is hard

to perform given the rather large order at which these anomalous corrections appear- the

problems in perturbation theory can potentially appear in the form of double poles in some

(external) propagators. A re-examination of several diagrams brings us to conclude that

this situation is avoided.

Coming to a direct phenomenological application, we investigate the role of these

vertices in the study of the anomalous magnetic moment of the muon. We stress that

if the physical mechanism introduced for the cancellation of the anomaly is of WZ type,

then a physical axion appears in the spectrum. This is the case if the anomalous extra

Z ′ receives its mass both by the Higgs and the Stückelberg mechanisms. Both for the GS

and the WZ case we outline the role of the anomalous extra Z ′ and of the pseudoscalar

exchange up to 2-loop level. A previous analysis of the leading contribution to g − 2 for

intersecting brane models can be found in [27].

More recently, the GS vertex has been used in the study of the coupling of the Kaluza-

Klein (KK) [22, 28] excitations of gauge bosons to fermions, where it has been pointed out

the possibility to detect these coupling at the LHC, for instance in tt̄ production. We find

that several of these results are based on a still unsatisfactory understanding of the GS

mechanism at theoretical level, and our work is an attempt to clarify some of these points.

From our analysis will emerge the correct structure of the broken Ward identities for the

GS vertex, which are specific of a non-local theory. These points will be carefully analyzed

in the final section of this work.
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2. The GS and WZ vertices

The field theory version of the GS mechanism, deprived of all its stringy features, appears

in an attempt to cancel the anomaly by introducing a specific non-local counterterm added

to the anomalous theory. This attempt had been the cause of serious debates which have

questioned the consistency of the approach. The mechanism uses a ghost-like particle,

which in string theory is generically identified as an axion - although there it does not

appear as an asymptotic state - to restore the broken Ward identities due to the anomaly.

A paradigm for the GS mechanism in field theory is an anomalous version of axial QED in

4-dimensions defined by the lagrangean

L5 QED = ψ (i∂/ + eB/γ5)ψ − 1

4
F 2

B (2.1)

plus the counterterm

Sct =
1

24π2
〈∂B(x)�−1(x− y)F (y) ∧ F (y)〉. (2.2)

Federbush [29] proposed to reformulate this lagrangean in terms of one axion and one

ghost-like particle interacting via a Wess-Zumino (WZ) counterterm (see the discussion

in [8]). An equivalent formulation of the same subtraction counterterm is given in [23],

where a transversality constraint (∂B = 0) is directly imposed on the lagrangean via a

multiplier. Eq. (2.2) can be obtained by performing the functional integral over a and b of

the following action

L = ψ (i 6 ∂ + e 6 Bγ5)ψ − 1

4
F 2

B +
e3

48π2M
FB ∧ FB(a+ b)

+
1

2
(∂µb−MBµ)2 − 1

2
(∂µa−MBµ)2 . (2.3)

The integral on a and b are gaussians and one recovers the non-local contribution in (2.2)

after partial integration. Notice that b has a positive kinetic term and a is ghost-like. Both

a and b shift by the same amount under a gauge transformation of B

a→ a+Mθ, b→ b+Mθ (2.4)

where θ is the gauge parameter. This second (local) formulation of the pole counterterm

contained in (2.2) shows the connection between this action and the WZ mechanism [8].

Both actions, in fact, share some similarities, but describe different theories. In particular,

the WZ action is obtained by removing the ghost term (b) and keeping only the axion. This

second theory is characterized by a unitarity bound [8]. The bound is due to the fact that

in effective models containing Wess-Zumino interactions, gauge invariance of the effective

action requires a cancellation between different trilinear vertices: the anomalous vertices

and the axion counterterm φF ∧ F , while for Green-Schwarz vertices the subtraction of

the longitudinal component of the anomaly is sufficient to make the effective vertex gauge-

invariant to all orders. In both cases the physical amplitudes are gauge-independent.
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Figure 1: A gauge invariant GS vertex of the AVV type, composed of an AVV triangle and a

single counterterm of Dolgov-Zakharov form. Each term is denoted by ∆λµν GS
AV V (a), ∆λµν

AV V (b) and

Cλµν
AV V (c).

= + +

(a)

+

(b)
A

A

A

(c)

b

(d)

b

(e)

b

Figure 2: All the contributions to the GS gauge invariant vertex, for an AAA triangle. The single

terms are denoted by ∆λµν GS
AAA (a), ∆λµν

AAA (b), Cλµν
AV V (c), Cµνλ

AV V (d) and Cνµλ
AV V (e).

In the WZ case the proof of gauge independence is rather involved and has been

discussed before [5]. In the GS case, instead, this is trivial since the vertex is gauge-

invariant by construction. Notice that a local counterterm in the form of a Peccei-Quinn

term is not sufficient to remove the power-like growth with energy of a class of amplitudes

(BIM amplitudes, Bouchiat, Iliopoulos and Meyer) [8] that are characterized by anomalous

production and anomalous decay of massless gauge bosons in the initial and final states,

mediated by the exchange of an anomalous Z ′ in the s-channel. These amplitudes are

quite interesting since they evade the Landau-Yang theorem, triggering a Zγγ vertex. The

phenomenological implications of these amplitudes are discussed in a companion work.

2.1 The GS vertex in the AAA and AV V cases

In our analysis, we denote with Tµνλ the 3-point function in momentum space, obtained

from the lagrangeans (2.1) and (2.2). In the case of three axial-vector currents we define

the correlator

(2π)4δ(4)(k1 + k2 − k)∆λµν
AAA(k, k1, k2) =

∫
d4x1d

4x2d
4x3e

i(k1x1+k2x2−kx3) × (2.5)

×〈J5
µ(x1)J

5
ν (x2)J

5
λ(x3)〉.

and a symmetric distribution of the anomaly for the AAA vertex 1

kλ∆λµν
AAA(k, k1, k2) =

an

3
ε[µ, ν, k1, k2]

k1µ∆λµν
AAA(k, k1, k2) =

an

3
ε[λ, ν, k, k2] k2ν∆

λµν
AAA(k, k1, k2) =

an

3
ε[λ, µ, k, k1]. (2.6)

1We have used the following notation an = −

i

2π2
and ε[µ, ν, k1, k2] = εµναβk1αk2β
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In the AV V case, a second vector-like gauge interaction (Aµ) is introduced in eq. (2.3) for

more generality and we have

(2π)4δ(4)(k1 + k2 − k)∆λµν
AV V (k, k1, k2) =

∫
d4x1d

4x2d
4x3e

i(k1x1+k2x2−kx3) × (2.7)

×〈Jµ(x1)Jν(x2)J
5
λ(x3)〉,

where the anomaly equations are

kλ∆λµν
AV V (k, k1, k2) = anε

µναβk1αk2β

k1µ∆λµν
AV V (k, k1, k2) = 0

k2ν∆λµν
AV V (k, k1, k2) = 0. (2.8)

Below we will consider both the AV V and AAA cases. The GS counterterm that cor-

responds to the exchange of the massless pole of eq. (2.2) takes the following form in

momentum space in the AV V case

Cλµν
AV V (k, k1, k2) = Cµν(k1, k2)k

λ = −an

k2
kλǫ[µ, ν, k1, k2]. (2.9)

Similarly, a GS counterterm in the AAA case, with incoming momentum k and out-

going momenta k1, k2, is defined as

Cλµν
AAA(k, k1, k2) =

1

3

(
Cλµν

AV V (k, k1, k2) + Cµνλ
AV V (−k1, k2,−k) + Cνλµ

AV V (−k2,−k, k1)
)

=
1

3

(
Cµν(k1, k2)k

λ − Cνλ(k2,−k)kµ
1 − Cλµ(−k, k1)k

ν
2

)
(2.10)

= −1

3

(
an

k2
kλǫ[µ, ν, k1, k2] +

an

k2
1

kµ
1 ǫ[λ, ν, k, k2] +

an

k2
2

kν
2 ǫ[λ, µ, k, k1]

)
,

and corresponds to the Dolgov-Zakharov form (DZ) of the anomaly diagram [30] (mod-

ulo a minus sign). The re-defined vertex shown in figure 1 is written as

∆λµν GS
AV V (k, k1, k2) = ∆λµν

AV V (k, k1, k2) + Cλµν
AV V (k, k1, k2) (2.11)

and we obtain a similar expression for the AAA vertex (figure 2) just by replacing AV V

with AAA in eq. (2.11) and taking into account the different form of the counterterms.

These gauge invariant vertices trivially satisfy the Ward identities

kλ∆λµν GS(k, k1, k2) = k1µ∆λµν GS(k, k1, k2) = k2ν∆λµν GS(k, k1, k2) = 0, (2.12)

where again ∆λµν GS refers either to an AV V or to an AAA correlator.

2.2 Implications of the GS vertex: vanishing of (real) light-by-light scattering

at 2-loop

To illustrate some of the properties of the GS vertex and its implications, we consider a

2-loop process in which we have two massless vector bosons in the initial and in the final

– 6 –
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Figure 3: Amplitude with two full GS vertices and the exchange of an axial-vector current in the

s-channel. For on-shell external lines the contributions from the extra poles disappear.

(a)

(c)

(b)

(d)

Figure 4: All the contributions from the GS gauge invariant vertex, in the AVV case, to the

amplitude VV→ VV via an axial-vector current.

state with the exchange in the s-channel of an axial-vector current (figure 3). The example

that we provide here comes from anomalous axial QED, but it can be extended to more

realistic models with no major variants. In figure 3 both the initial and the final state

contain anomalous subdiagrams, but the two GS vertices are defined in such a way to

absorb all the longitudinal subtractions terms inside each of the blobs. The amplitude of

such a process is given by

Mµνµ′ν′

= ∆λµν GS
AV V (−k,−k1,−k2)

(
− igλλ′

k2

)
∆λ′µ′ν′ GS

AV V (k, k′1, k
′
2). (2.13)

In the expression above, the propagator is deprived of its longitudinal momentum depen-

dence due a Ward identity. The amplitude in eq. (2.13) can be decomposed into the four

sub-amplitudes shown in figure 4 after expanding the two GS vertices with eq. (2.11)

Mµνµ′ν′

= −
(
∆λµν

AV V (−k,−k1,−k2) − kλCµν(−k1,−k2)
)
× (2.14)

× igλλ′

k2

(
∆λ′µ′ν′

AV V (k, k′1, k
′
2) + Cλ′µ′ν′

(k′1, k
′
2)
)
,

but only two sub-amplitudes survive (figure 4a and 4b) because of the Ward identities in

eq. (2.12).

We are left with two contributions which cancel, for on-shell matrix elements. In fact,

while off-shell the graph in figure 5 spoils unitarity, when instead the four external lines

are on-shell the triangle contribution (the first term) reduces to the DZ form and the can-

cellation between the two terms is identical. In view of the structure of the anomaly vertex

and of the GS vertex given before, this cancellation implies that the anomaly diagram, for

on-shell (axial-vector) photons and in the chiral limit, is purely longitudinal (DZ form). A

similar result holds also for the AAA case.

– 7 –
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(a)

=

(b)

Figure 5: The sub-amplitude in figure 4b after the contraction kλ∆λµν
AV V which gives the anomaly

equation.

Figure 6: The embedding of the BIM amplitude with GS vertices in a fermion/antifermion scat-

tering.

(a) (b)

Figure 7: Contributions to the fermion-antifermion scattering with the GS mechanism.

It is then natural to look at more general situations when these types of diagrams

appear into higher order contributions. In these more general cases, the anomaly diagram

does not coincide with its DZ form, except for specific kinematical points (k2
1 = k2

2 = k2,

off-shell), and there is no identical cancellation of the anomalous trilinear gauge interac-

tions. We conclude that compared to the identical cancellation of the anomaly by charge

assignment on each generation, which eliminates all-together all the trilinear gauge inter-

actions, the GS vertex can be either transversal or vanishing (in the chiral limit) for each

given flavour.

As we have previously mentioned, an anomaly vertex with the addition of the pole

counterterms (i.e. deprived of the anomaly pole) has been criticised in previous works

in [26]. There the author brings in as an example a class of amplitudes which are affected

by double poles, claiming a unitarity failure of the model. We will argue against this

interpretation.

2.3 Embedding the GS vertex into higher order diagrams

When we embed the amplitude into higher order diagrams (see figure 6), and consider an

on-shell fermion-antifermion scattering, according to [26], we are forced to move away from

a symmetric configurations of the loop momenta and the identical vanishing of the anomaly

is not ensured any longer, for the reasons that we have just raised above. In particular,

according to [26], the s-channel exchange is affected by a double pole.

There is no better way to check the correctness of these conclusions than going through

an explicit computation of this amplitude, using some results of the recent literature on

– 8 –
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radiative corrections.

Expanding the two GS vertices, which are clearly non-zero in this case, we end up

with several contributions, such as a graph with two triangle diagrams, and a specific

set of counterterms. The two contributions involved in the study of fermion-antifermion

scattering are shown in figure 7. Notice the presence of the box-triangle diagram (BT ) in

the first graph, which remains non-trivial to compute even in the chiral limit. The second

graph is the only contribution which does not disappear, according to [26], and therefore

describes a spurious s-channel exchange characterized by a double pole.

The conclusions of [26] are erroneous for two reasons: 1) in this specific case the

double pole cancels in the explicit computation, so it not a good counter example; 2) the

cancellation or the presence of double poles should be analyzed together with the anomalous

vertex and not separately. This second point will be addressed in the next sections.

To prove point 1) we need the 2-loop structure of the BT graph, which is just propor-

tional to its tree-level axial-vector form times a form factor G(s), function of s = (p1+p2)
2,

v̄(p2)γ
λγ5u(p1)G(s). (2.15)

Explicit expressions of the G(s) coefficient in the massless case are obtained from [31] and

are given by

ReG(s,mi = 0,mq = 0) = 3 log

(
s

µ2

)
− 9 + 2ζ(2)

ImG(s,mi = 0,mq = 0) = −3, (2.16)

where mi is the mass of the internal fermion with flavor i circulating in the triangle diagram

while mq is the mass of the fermionic external leg with flavor q.

We have for the two sub-amplitudes in figure 7

Ma = −G2(s)v̄(p2)γ
λγ5u(p1)

i

k2
ū(p′1)γλγ

5v(p′2)

Mb = i

∫
d4k1

(2π)4

[
v̄(p2)γ

ν p/1 − k/1

(p1 − k1)2
γµu(p1)

1

k2
1

1

k2
2

anǫ[µ, ν, k1, k2]

]
×

× 1

(k2)2
ū(p′1)k/γ

5G(s)v(p′2) = 0 , (2.17)

where Mb is identically zero, because of the equations of motion satisfied by the external

fermion lines (k = p′1 + p′2).

We can easily generalize our analysis to an AAA case, for this we have to consider

eqs. (2.1), (2.2). When an AAA triangle is embedded in the 2-loop fermion-antifermion

scattering process we can formally write the amplitude as follows

S =

∫
d4k1

(2π)4
d4k′1
(2π)4

v̄(p2)γ
ν 1

p/1 − k/1

γµu(p1)
1

k2
1

1

k2
2

S µνµ′ν′

ū(p′1)γ
µ′ 1

k/′1 − p/′1
γν′

v(p′2)
1

k′1
2

1

k′2
2

(2.18)
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(a) (b)

Figure 8: The axial-vector form factor for the BT diagram.

p1

p2

p1 − k1

k1

k2

k

p1

p2

p1 − k1

k1

k2

k

p1

p2

p1 − k1

k1

k2

k

(a) (b) (c)

Figure 9: The one loop GS counterterms included in the BT as its longitudinal part.

(a)

(c) (d)

(b)

Figure 10: All the contributions in the symmetric GS vertex.

where the tensor sub-amplitude is defined as

S µνµ′ν′

= −∆λµν GS
AAA (−k,−k1,−k2)

igλλ′

k2
∆λ′µ′ν′ GS

AAA (k, k′1, k
′
2)

= −[∆λµν
AAA(−k,−k1,−k2) + Cλµν

AAA(−k,−k1,−k2)] ×

× i

k2
[∆λµ′ν′

AAA (k, k′1, k
′
2) + Cλµ′ν′

AAA (k, k′1, k
′
2)]. (2.19)

Using the Ward identity kλ∆λµν GS
AAA (−k,−k1,−k2) = 0, we can drop the GS counterterm

Cλµ′ν′

AAA (k, k′1, k
′
2). In this way the sixteen terms which contribute to the sub-amplitude

S µνµ′ν′

given in eq. (2.19) reduce to the four terms shown in figure 10. Therefore the total

femion-antifermion scattering amplitude is given by the sum of four terms Sa, Sb, Sc and

– 10 –
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Sd which are defined below

Sa = −BT λ
AAA

i

k2
BT λ

AAA

Sb = i

∫
d4k1

(2π)4

(
v̄(p2)γν

1

p/1 − k/1

γµu(p1)
1

k2
1

1

k2
2

)
an

3

kλ

k2
ǫ[µ, ν, k1, k2]

1

k2
BT λ

AAA

Sc = i

∫
d4k1

(2π)4

(
v̄(p2)γν

1

p/1 − k/1

γµu(p1)
1

k2
2

1

k2
1

an

3

kµ
1

k2
1

ǫ[ν, λ, k2, k]

)
1

k2
BT λ

AAA

Sd = i

∫
d4k1

(2π)4

(
v̄(p2)γν

1

p/1 − k/1

γµu(p1)
1

k2
1

1

k2
2

an

3

kν
2

k2
2

ǫ[λ, µ, k, k1]

)
1

k2
BT λ

AAA , (2.20)

where we have defined

BT λ
AAA(k, p′1, p

′
2) = −

∫
d4k′1
(2π4)

∆λµ′ν′

AAA (k, k′1, k
′
2)ū(p

′
1)γ

µ′ 1

k/′1 − p/′1
γν′

v(p′2)
1

k′1
2

1

k′2
2 (2.21)

and the total amplitude is given by

S = Sa + Sb + Sc + Sd. (2.22)

In the Sb sub-amplitude we distribute the anomaly symmetrically on each vertex and using

the following Ward identities on the vector currents we obtain

kλBT λ
V AV = kλBT λ

V V A = 0. (2.23)

This allows us to simplify the Sb expression as follows

Sb = i

∫
d4k1

(2π)4

(
v̄(p2)γν

1

p/1 − k/1

γµu(p1)
1

k2
1

1

k2
2

)
an

3

1

(k2)2
ǫ[µ, ν, k1, k2]ū(p′1)k/γ

5G(s)v(p′2)

= 0 , (2.24)

where we have used the result shown in [31].

Also the third amplitude Sc does not contribute to S, in fact we have

Sc = i v̄(p2)γνu(p1)
an

3
ǫ[ν, λ, ρ, σ]kσ

∫
d4k1

(2π)4

(
kρ
1

(k − k1)2k
4
1

)
1

k2
BT λ

AAA = 0, (2.25)

which vanishes by symmetry due to the structure of the tensor integral, which is propor-

tional to kρ. We refer to the appendices for more details concerning the techniques of

evaluation of this and other similar integrals with “double propagators”. In the same way

also the fourth contribution vanishes, Sd = 0. This explicit computation contradicts the

conclusions of [26] where the same amplitude was conjectured to be affected by double

poles in the s-channel.

There are some conclusions to be drawn. The first is that the replacement of the

two anomaly vertices in the amplitude with two GS vertices, in this case, is irrelevant as

far as the fermions are massless. Equivalently, the longitudinal components of the two
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anomaly vertices decouple in the graph and the only invariant amplitudes coming from the

anomaly vertices that survive - after the integration on the second loop momentum - are

the transverse ones. This is one special case in which the anomaly diagram is transverse in

the virtual corrections just by itself. In other cases this does not happen and the extra poles

introduced by the counterterm are sufficient to cancel those generated by the anomaly. For

this reason the presence of extra poles in a partial amplitude is not necessarily the sign of

an inconsistency.

2.4 The vertex in the longitudinal/transverse (L/T) formulation

The analysis presented above becomes more transparent if we use a special parameterization

of the anomaly diagram in which the longitudinal part of the vertex is separated from

the transverse one, as done in recent studies of radiative corrections to the anomalous

magnetic moment of the gluon [32]. This parameterization is more convenient than the

usual Rosenberg form [33].

While the longitudinal component of the anomaly diagram is given by its DZ form,

once this component is subtracted from the general triangle diagram, it leaves behind an

anomaly-free vertex which is purely transverse and corresponds to the GS trilinear interac-

tion. The Ward identities restrict the general covariant decomposition of ∆GS
λµν(k3, k1, k2)

into invariant functions to three terms (with all the momenta incoming )

∆GS
λµν(k1, k2) = − 1

8π2

(
w

(+)
T

(
k2
1 , k

2
2 , k

2
3

)
t
(+)
λµν(k1, k2) + w

(−)
T

(
k2
1 , k

2
2 , k

2
3

)
t(−)
µνρ(k1, k2)

+w̃
(−)
T

(
k2
1 , k

2
2 , k

2
3

)
t̃(−)
µνρ(k1, k2)

)
, (2.26)

with the transverse tensors given by

t(+)
µνρ(k1, k2) = k1ν εµραβ k

α
1 k

β
2 − k2µ ενραβ k

α
1 k

β
2 − (k1 · k2) εµνρα (k1 − k2)

α

+
k2
1 + k2

2 − k2
3

k2
3

εµναβ k
α
1 k

β
2 (k1 + k2)ρ ,

t(−)
µνρ(k1, k2) =

[
(k1 − k2)ρ − k2

1 − k2
2

(k1 + k2)2
(k1 + k2)ρ

]
εµναβ k

α
1 k

β
2

t̃(−)
µνρ(k1, k2) = k1ν εµραβ k

α
1 k

β
2 + k2µ ενραβ k

α
1 k

β
2 − (k1 · k2) εµνρα (k1 + k2)

α , (2.27)
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where, due to Bose symmetry (k1, µ↔ k2, ν) we have

w
(+)
T

(
k2
2, k

2
1 , k

2
3

)
= +w

(+)
T

(
k2
1 , k

2
2 , k

2
3

)
,

w
(−)
T

(
k2
2, k

2
1 , k

2
3

)
= −w(−)

T

(
k2
1 , k

2
2 , k

2
3

)
, w̃

(−)
T

(
k2
2 , k

2
1 , k

2
3

)
= −w̃(−)

T

(
k2
1, k

2
2 , k

2
3

)
. (2.28)

This version of the GS-corrected AVV vertex satisfies the Ward identities on all the three ex-

ternal lines. The explicit expression of these invariant amplitudes can be obtained from [34]

w̃
(−)
T (k2

1 , k
2
2 , k

2
3) = −w(−)

T (k2
1 , k

2
2 , k

2
3), (2.29)

k2
3∆

2w
(−)
T (k2

1 , k
2
2 , k

2
3) = 8(x− y)∆ + 8(x− y)(6xy + ∆)Φ(1)(x, y)

−4[18xy + 6x2 − 6x+ (1 + x+ y)∆)]Lx

+4[18xy + 6y2 − 6y + (1 + x+ y)∆)]Ly , (2.30)

k2
3∆

2w
(+)
T (k2

1 , k
2
2 , k

2
3) = 8[6xy + (x+ y)∆]Φ(1)(x, y) + 8∆

−4[6x+ ∆](x− y − 1)Lx

+4[6y + ∆](x− y + 1)Ly (2.31)

with

Lx = lnx, Ly = ln y, x =
k2
1

k2
3

y =
k2
2

k2
3

. (2.32)

which involves the scalar triangle diagram for general off-shell lines and determines the

function Φ(1) [35] as

Φ(1)(x, y) =
1

λ

{
2 (Li2 (−ρx) + Li2 (−ρy)) + ln

y

x
ln

1 + ρy

1 + ρx
+ ln(ρx) ln(ρy) +

π2

3

}
,

(2.33)

where

λ(x, y) ≡
√

∆ , ρ(x, y) ≡ 2 (1 − x− y + λ)−1, ∆ ≡ (1 − x− y)2 − 4xy . (2.34)

The full anomaly amplitude is simply obtained by adding the anomaly pole to this expres-

sion

∆λµν = wLk
λǫ[µ, ν, k1, k2] + ∆GS λµν (2.35)

with wL = 1/(8π2k2).

In a non-anomalous theory a specific charge assignment -in the chiral limit- sets to

zero the entire trilinear gauge interaction (identically), while in theories characterized by

the GS vertex we require the vanishing of the anomalous part (the anomaly pole). The

pole is part of the expression of the triangle diagram, which may or may not contribute

in certain graphs. A typical example is shown in figure 11 which is not sensitive (in the

massless fermion limit) to the longitudinal component of the anomaly, due to the Ward

identities satisfied by the fermion antifermion currents on each external photon line (we

are considering axial-vector interactions for each photon). In fact, this is a case in which

a GS vertex or a complete anomaly vertex give the same contributions. In this sense, the
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Figure 12: The muon decay process via a BT diagram.

anomaly, for this graph, is harmless since the external fermion current is conserved, but this

situation is not general. In fact, we will analyze cases in which a similar situation occurs,

and others in which the decoupling of the longitudinal part requires the subtraction of wL

from the anomaly diagram. As we have seen above, there are other cases in which the GS

vertex is identically vanishing, and this happens in graphs in which the transverse part of

the anomaly diagram is zero, as in light-by-light scattering. The anomaly diagrams are

purely longitudinal, and their replacement with the GS vertex has to give necessarily zero.

We come therefore to discuss point 2) which has been raised in the previous section. We

cannot address the issue of double poles only in the DZ counterterms and forget that the

same poles are also present in the triangle anomaly. In other words: the cancellation of the

counterterms in specific graphs takes place if and only if the anomaly diagram is harmless.

2.5 Examples of explicit GS counterterms: anomaly in muon decay

In general, a given amplitude containing an anomalous extra Z ′ can be harmless if we

neglect all the fermion masses and harmful in the opposite case. An interesting example is

shown in figure 12 which describes a special decay of the muon, mediated by aWWZ vertex.

In general, in anomalous extensions of the SM, this amplitude requires a longitudinal

subtractions either with the inclusion of a GS or a WZ counterterm. For massless fermions,

for instance, the process is anomaly-free. To show this point consider the amplitude for

the second diagram in figure 12 which is given by

P = i

∫
d4k2

(2π)4
ū(p′1)γ

µ 1

p/′1 + k/1

γνv(p′2)
1

k2
1

(
gβν − kβ

2 k
ν
2

M2
W

)
1

k2
2 −M2

W

×an

3

kβ
2

k2
2

ε[α, µ, k, k1]
1

k2
ū(p2)γ

αu(p1)

= i ū(p′1)γ
µv(p′2)

1

k2
ū(p2)γ

αu(p1)ε[α, µ, p
′
12, τ ]

∫
d4k2

(2π)4
kτ
2

k2
2 (−p′12 − k2)2

. (2.36)

After using the equations of motion for on-shell spinors with p′1 + p′2 + k1 + k2 = 0 and the

tensor integral decomposition in terms of the only momentum in the loop, p′12 = p′1+p
′
2, it is

trivial to verify that the expression vanishes. If we switch-on the external fermion masses,

the violation of the Ward identities will induce a longitudinal coupling of the anomaly

pole on the neutral current, which need an explicit GS subtraction. We will come back
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to address the structure of the anomalous contributions away from the chiral limit below,

when we will analyze the contribution of similar diagrams to g − 2 of the muon.

2.6 Self-energy and gauge invariance

Anomalous contributions, in these models, appear also in the running of the coupling,

though at a rather large order. Also in this case transversality of the self-energy is ensured

by construction, being the GS vertex transverse by definition, however, the separation of

the vertex into anomaly graph and GS counterterms illustrates how the cancellation of all

the double poles takes place.

The corrections appear at 3-loop level and are shown in figure 13. We denote with

a, b the GS vertices and assign a number on each line of all the vertices. For instance, in

figure 13 vertex a shares lines 2 and 4 with vertex b. The anomaly diagrams are denoted by

∆a and ∆b, respectively, and are separated into the linear combinations AV V, V AV and

V V A as in the previous example, carrying partial anomalies. The pole counterterm can

be “emitted” by the vertex either toward the initial or the final state of the diagram along

the numbered line. For instance Ca2 denotes the DZ counterterm that is generated by

vertex a with a mixing/ double pole term generated on line 2. Other trivial cancellations

are obtained due to the orthogonality relations between DZ counterterms associated to

different lines when they are contracted together.

The expression of the integrand in the amplitude is given by

Mλλ′

self = −∆λµν GS
AAA,a (k, k1,−k2)

gµµ′

k2
1

gνν′

(k1 − k)2
∆λ′µ′ν′ GS

AAA,b (−k,−k1, k2)

= − [∆AAA,a + CAAA,a]
λµν 1

k2
1(k1 − k)2

[∆AAA,b + CAAA,b]
λ′µν , (2.37)

where the counterterms are explicitly given by

Cλ′µν
AAA,b(−k,−k1, k2) =

1

3

(
Cλ′µν

b3 (−k,−k1, k2) + Cµνλ′

b2 (k1, k2, k) + Cνλ′µ
b4 (−k2, k,−k1)

)

= Cµν
b3 (−k1, k2)k

λ′

+ Cνλ′

b2 (k2, k)k
µ
1 + Cλ′µ

b4 (k,−k1)k
ν
2 , (2.38)

Cλµν
AAA,a(k, k1,−k2) =

1

3

(
Cλµν

a1 (k, k1,−k2) + Cµνλ
a2 (−k1,−k2,−k) + Cνλµ

a4 (k2,−k, k1)
)

= Cµν
a1 (k1,−k2)k

λ + Cνλ
a2 (−k2,−k)kµ

1 + Cλµ
a4 (−k, k1)k

ν
2 , (2.39)

so using the Ward identities

kµ
1 ∆λ′µν GS

AAA,b (−k,−k1, k2) = kν
2∆λ′µν GS

AAA,b (−k,−k1, k2) = 0 (2.40)
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we can reduce the sixteen contributions of the amplitude Mλλ′

self to eight terms.

The GS counterterms Ca1 and Cb3 are non-zero for off-shell external photons and are

needed to remove the longitudinal poles from the anomaly diagram, while the remaining

counterterm contributions are those shown in figure 14. The latter are transverse just by

themselves, as we are going to show. They are given by

Mλλ′

self = −∆λµν
AAA,a

1

k2
1(k1 − k)2

[∆AAA,b + Cb2 + Cb4]
λ′µν

= −
(

∆λµν
AAA,a

1

k2
1(k1−k)2

∆λ′µν
AAA,b+∆λµν

AAA,a

1

k2
1(k1−k)2

Cµνλ′

b2

+∆λµν
AAA,a

1

k2
1(k1−k)2

Cνλ′µ
b4

)

= Γλλ′

∆∆ + Γλλ′

∆2 + Γλλ′

∆4 . (2.41)

The amplitude Γ∆2 can be cast in this form using dimensional regularization in D

dimensions

Γλλ′

∆2 = −
∫

d4k1

(2π)4
∆λµν

AAA,a(k, k1,−k2)
1

k2
1(k1 − k)2

Cµνλ′

b2 (k1, k2, k)

=
an

3
ǫ[λ, ν, α, k]

an

3
ǫ[ν, λ′, β, k]

∫
d4k1

(2π)4
kα
1 k

β
1

k4
1(k1 − k)2

= −1

2

(an

3

)2
ǫ[λ, ν, α, k]ǫ[ν, λ′, β, k]gαβ 1 −D

s
BubD+2(s)

=
(an

3

)2
(kλkλ′ − k2gλλ′

)(1 −D)
BubD(s)

8π(3 − 2ǫ)

= C (kλkλ′ − k2gλλ′

)BubD(s), (2.42)

where the explicit expressions of the two master integrals BubD(s) and BubD+2(s) can be

found in the appendix in eqs. (C.57), (C.59) and

C =
(an

3

)2 1 −D

8π(3 − 2ǫ)
. (2.43)

If we include the same amplitude in a fermion-antifermion scattering, see figure 15, we

obtain

S∆2 = −v̄(p2)γ
λu(p1)

1

k2

(
kλkλ′

k2
− gλλ′

)
k2C BubD(s)

1

k2
ū(p′1)γ

λ′

v(p′2)

= v̄(p2)γ
λu(p1)

1

k2
C BubD(s) ū(p′1)γ

λv(p′2), (2.44)
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Figure 15: A self-energy amplitude embedded in a physical process of fermion-antifermion scat-

tering with on-shell external lines.

with

BubD(s) =
iπD/2

(2π)D
µ2ǫ

(
eγ

4π

)ǫ cΓ
ǫ(1 − 2ǫ)

(s)−ǫ(−1)ǫ, (2.45)

where we have used the equations of motion for the on-shell spinors (k = p1 + p2 =

p′1+p
′
2). The transversality of the pole counterterm comes as a surprise, since while the total

amplitude with GS vertices is transverse by construction, the anomalous contribution, in

principle, is not expected separately to be so. The computation shows that internal double

poles, those due to the GS counterterms, give contributions which are also transversal. This

shows once more that there are no apparent inconsistencies in the perturbative expansion

of the theory.

3. Higher order diagrams

Having worked out several examples in which either the extra poles appear explicitly or

cancel by themselves, signalling a harmless anomaly, we now move to discuss more complex

cases, where these techniques will be systematized.

We have two ways to apply the GS vertex at higher order. We could use its explicit

form — in terms of its transverse invariant amplitudes — or we could use it in the form

”anomaly diagrams plus counterterms”. This second form is the most useful one. The

presence of higher poles in the counterterms, which balance those -not explicit- in the

anomaly diagrams, can be treated perturbatively as a field theory of a higher perturbative

order. We will illustrate below two cases from which one can easily infer the general

features of the perturbative expansion with these types of graphs. It should be clear that

the cancellation of all the poles from the external lines takes place only on-shell, but this

is not a problem since we are interested in S-matrix elements.

3.1 3-point functions

For this reason we consider the 4-loop-diagram shown in figure 16 with three symmetric

GS vertices of the AAA type connected together, which is given by

Mλρτ = i (∆+C1+C2+C6)
λµν
a

1

k2
2

(∆+C2+C3+C4)
µρσ
b

1

k2
4

(∆+C4+C5+C6)
στν
c

1

k2
6

, (3.1)

where, as done in the previous sections, ∆ denotes an AAA triangle amplitude with a

symmetric anomaly distribution on each vertex and Ci a single GS counterterm with the

derivative coupling on the i-th line. At this stage we start simplifying the term (∆ +C2 +
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Figure 17: The Γ4, Γ6 and Γ2 contributions taken from M at 4-loop-level.

C3 + C4)b as (GS)b and in a similar way the c blob using the Ward identities

Ca2(GS)b = Ca6(GS)c = Cb4(GS)c = 0, (3.2)

and then omit the GS counterterms Ca1, Cb3, Cc5 in which the transversality conditions

ǫ1λk
λ
1 = ǫ5τk

τ
5 = ǫ3ρk

ρ
3 = 0 (3.3)

act on the derivative coupling, which allow to reduce the M amplitude to the six contri-

butions

Mλρτ = i (∆)λµν
a

1

k2
2

(∆ + C2)
µρσ
b

1

k2
4

(∆ + C4 + C6)
στν
c

1

k2
6

=
i

k2
2 k

2
4 k

2
6

(∆a∆b∆c+∆a∆bCc4+∆a∆bCc6+∆aCb2∆c + ∆aCb2Cc4+∆aCb2Cc6)
λρτ

= (∆a∆b∆c + Γ4 + Γ6 + Γ2 + Γ24 + Γ26)
λρτ , (3.4)

where the notation Γi and Γij refers to the line corresponding to the counterterm in fig-

ure 16. At this point we consider the ∆a∆bCc4 contribution represented in figure 17 with

a counterterm on the line 4 denoted by Γλρτ
4

Γλρτ
4 = i

∫
d4k4

(2π)4

[
∆λµν

a (k1, k2,−k6)
1

k2
2

∆µρσ
b (k2,−k3, k4)

1

k2
4

an

3 k2
4

kσ
4 ǫ[τ, ν, k5, k6]

1

k2
6

]
, (3.5)

in which we substitute the Rosenberg parametrization for the triangle amplitude

∆λµν
a (k1, k2,−k6) given by

∆λµν
a (k1, k2,−k6) = A1 ǫ[k2, µ, ν, λ] −A2 ǫ[k6, µ, ν, λ] −A3 k

ν
2 ǫ[k2, k6, µ, λ] (3.6)

+A4 k
ν
6 ǫ[k2, k6, µ, λ] −A5 k

µ
2 ǫ[k2, k6, ν, λ] +A6 k

µ
6 ǫ[k2, k6, ν, λ],
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Figure 18: Representation of Γ24 and Γ26, the two terms with double poles on the internal lines.

and the anomaly equation

kσ
4 ∆µρσ

b (k2,−k3, k4) = −an

3
ǫ[µ, ρ, k2, k3]. (3.7)

We choose k1 and k5 as independent momenta, so we have

k3 = −(k1 + k5), k2 = k1 + k4 + k5, k6 = k4 + k5, (3.8)

with the on-shell conditions k2
1 = k2

5 = k2
3 = 0. A direct computation of the Γλρτ

4 amplitude

shows the complete cancellation of the spurious double pole relative to the k4 momentum.

In an analogous way we can consider the ∆a∆bCc6 term or Γ6 in eq. (3.4), that is

Γλρτ
6 = i

∫
d4k6

(2π)4

[
∆λµν

a (k1, k2,−k6)
1

k2
2

∆µρσ
b (k2,−k3, k4)

1

k2
4

an

3 k2
6

kν
6ε[σ, τ, k4, k5]

1

k2
6

]
(3.9)

and the ∆aCb2∆c term or Γ2

Γλρτ
2 = i

∫
d4k2

(2π)4

[
∆λµν

a (k1, k2,−k6)
1

k2
2

an

3 k2
2

kµ
2 ε[ρ, σ, k3, k4]

1

k2
4

∆στν
c (k4,−k5, k6)

1

k2
6

]
,

(3.10)

for which the conditions in eq. (3.6) and (3.7) have to be modified in a suitable form. After

the expansion of the tensor integrals in terms of the two external momenta k1 and k5 we

can conclude that also in this case the double poles don’t contribute to the physical on-shell

amplitude. In a similar way we can show the vanishing of the last contributions ∆aCb2 Cc4

(Γ24) and ∆aCb2 Cc6 (Γ26) shown in figure 18 due to antisymmetry

Γλρτ
24 = i

∫
d4k2

(2π)4

[
∆λµν

a (k1, k2,−k6)
1

k2
2

an

3 k2
2

kµ
2 ǫ[ρ, σ, k3, k4]

1

k2
4

an

3 k2
4

kσ
4 ǫ[τ, ν, k5, k6]

1

k2
6

]
= 0.

(3.11)

In the ∆aCb2Cc6 case one obtains the same result after using the anomaly equation,

so that

Γλρτ
26 = i

∫
d4k2

(2π)4

[
∆λµν

a (k1, k2,−k6)
1

k2
2

an

3 k2
2

kµ
2 ǫ[ρ, σ, k3, k4]

1

k2
4

an

3 k2
6

kν
6 ǫ[σ, τ, k4, k5]

1

k2
6

]
,

(3.12)

where the contraction

kµ
2 ∆λµν

a (k1, k2,−k6) = −an

3
ǫ[ν, λ, k6, k1] (3.13)
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Figure 19: Representation of the total process f f̄ → AA at 3-loop level via two GS vertices,

with A as a generic gauge boson with axial-vector couplings. In diagrams a) and b) we show the

amplitudes Ma + exch. for the tree level process.

gives Γ26 = 0 for antisymmetry. In conclusion, the amplitude M at 4-loop-level, composed

by three GS symmetric vertices, is not affected by unphysical massless poles arising from the

derivative coupling present on some internal lines. As a result of this analysis it is clear that

there are far more cancellations than expected in some of these complex diagrams, due to

the structure of the pole counterterms. In fact each DZ counterterm induces a Ward identity

on an attached triangle diagram and brings in antisymmetric ǫ-tensors into the integrand.

This is enough, in many cases, to cause a diagram to vanish by symmetry/antisymmetry

of the integrand.

3.2 Higher point functions: general strategies and examples

In this subsection we analyze a rather complex example, which is fermion-antifermion

annihilation into two photons at 3-loop level, as shown in figure 19. We will detail our

approach, showing how the reduction into typical master integrals of higher orders takes

place for these types of theories.

The total amplitude of the process can be written as

Sµ′ν′

= −
∫

d4k

(2π)4

[
v̄(p2)γ

ν 1

k/ + p/1

γµu(p1) + v̄(p2)γ
µ 1

−k/ − p/2

γνu(p1)

]
× (3.14)

× gντ

(k + p1 + p2)2
gµσ

k2
Mσµ′ν′τ

c

where we have defined the sub-amplitude

Mσµ′ν′τ
c = ∆αµ′σ GS

AAA (k− p4,−p4, k)
−i

(k − p4)2
∆αν′τ GS

AAA (−k+ p4,−p3,−k− p1 − p2). (3.15)

Using the Ward identity (k − p4)
α∆αν′τ GS

AAA (−k + p4,−p3,−k − p1 − p2) = 0 we drop

the GS counterterm in ∆αµ′σ GS
AAA and we reduce the sub-amplitude Mσµ′ν′τ

c to the six
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Figure 20: Amplitudes Γ1∆, Γ15 and Γ13 involved in the cancellation of the internal poles.

contributions

Mσµ′ν′τ
c =

[
∆αµ′σ

AAA(k − p4,−p4, k) +Cσαµ′

(−k,−k + p4,−p4)
]

× −i
(k − p4)2

[
∆αν′τ

AAA(−k + p4,−p3,−k − p1 − p2)

+Cαν′τ (−k + p4,−p3,−k − p1 − p2) + Cταν′

(k + p1 + p2, k − p4,−p3)
]

= (Γ∆∆ + Γ∆3 + Γ∆5 + Γ1∆ + Γ13 + Γ15)
σµ′ν′τ , (3.16)

where we have used the transversality conditions

εµ′pµ′

4 = εν′pν′

3 = 0. (3.17)

Some of these contributions are easily shown to vanish, such as Γ1∆ shown in figure 20,

which is defined as

Γσµ′ν′τ
1∆ =

an

3k2
kσǫ[α, µ′, k − p4, p4]

−i
(k − p4)2

1

3
∆αν′τ

AV V (−k + p4,−p3,−k − p1 − p2). (3.18)

If we embed Γ1∆ in a fermion-antifermion annihilation process (figure 19) we obtain a new

amplitude, S1∆, given by

Sµ′ν′

1∆ = −
∫

d4k

(2π)4

[
v̄(p2)γ

ν 1

k/ + p/1

γµu(p1) + v̄(p2)γ
µ 1

−k/ − p/2

γνu(p1)

]
gντ

(k + p1 + p2)2
gµσ

k2

× an

3k2
ε[α, µ′, k − p4, p4]k

σ −i
(k − p4)2

1

3
∆αν′τ

AV V (−k + p4,−p3,−k − p1 − p2)

= −
∫

d4k

(2π)4

[
v̄(p2)γ

ν 1

k/ + p/1

k/u(p1) + v̄(p2)k/
1

−k/ − p/2

γνu(p1)

]
1

k2

1

(k + p1 + p2)2

× an

3k2
ε[α, µ′, k − p4, p4]

−i
(k − p4)2

1

3
∆αν′τ

AV V (−k + p4,−p3,−k − p1 − p2) = 0, (3.19)

where we have used the equations of motion for the on-shell spinors. We focus now our

attention on the two terms shown in figure 20 called Γ13 and Γ15 which both exhibit internal

poles. In a straightforward way we find that Γ13 vanishes

Γσµ′ν′τ
13 = Cσαµ′

(−k,−k + p4,−p4)
−i

(k − p4)2
Cαν′τ (−k + p4,−p3,−k − p1 − p2)

= −i an

3k2
kσǫ[α, µ′, k − p4, p4]

an

3(k − p4)4
(k − p4)

αǫ[ν ′, τ, p3, k + p1 + p2]

= 0, (3.20)
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for symmetry, while the amplitude Γ15 can be written as

Γσµ′ν′τ
15 = Cσαµ′

(−k,−k + p4,−p4)
−i

(k − p4)2
Cταν′

(k + p1 + p2, k − p4,−p3)

= Cαµ′

(k − p4, p4)k
σ −i
(k − p4)2

Cαν′

(k − p4, p3)(k + p1 + p2)
τ . (3.21)

The vanishing of the internal poles coming from Γ15 is obtained by considering both con-

tributions of figure 19, obtaining

Sµ′ν′

15 = −
(
Mµν

a + Mµν
b

) gµσ

k2

gντ

(k + p1 + p2)2
Γσµ′ν′τ

15

= −
∫

d4k

(2π)4

[
v̄(p2)(k/ + p/1 + p/2)

1

k/+p/1

k/u(p1) + v̄(p2)k/
1

−k/ − p/2

(k/+p/1+p/2)u(p1)

]

× 1

k2

1

(k + p1 + p2)2
Cαµ′ −i

(k − p4)2
Cαν′

= 0. (3.22)

At this point we are ready to isolate the only non vanishing contribution to the amplitude,

which is expressed in terms of the two components

Γσµ′ν′τ
∆3 =

1

3
∆αµ′σ

AV V (k − p4,−p4, k)
−i

(k − p4)2
Cαν′τ (−k + p4, p3, k + p1 + p2)

=
an

3
ε[µ′, σ,−p4, k]

−i
(k − p4)2

an

3(k − p4)2
ε[ν ′, τ, p3, k + p1 + p2] (3.23)

and

Sµ′ν′

∆3 = −
∫

d4k

(2π)4
(
Mµν

a + Mµν
b

) gµσ

k2

gντ

(k + p1 + p2)2
Γσµ′ν′τ

∆3

= −
∫

d4k

(2π)4

[
v̄(p2)γ

ν 1

k/ + p/1

γµu(p1) + v̄(p2)γ
µ 1

−k/ − p/2

γνu(p1)

]
gντ

(k + p1 + p2)2
gµσ

k2

×an

3
ε[µ′, σ,−p4, k]

an

3(k − p4)4
ε[ν ′, τ, p3, k + p1 + p2] (3.24)

which can’t be simplified any further. Also in this case, the presence of explicit ”extra poles”

in one of the amplitude, brings us to erroneous conclusions if we would claim a failure of

unitarity in the process. In fact, hidden in the anomaly diagrams are longitudinal couplings

that cancel those of the counterterms by construction, being the GS vertices transverse.

The evaluation of the counterterm amplitude follows a standard approach in perturba-

tion theory at higher order. To show how this takes place, consider the graph in figure 21.

We introduce the notation p3 = −p124 = −p1 − p2 − p4 for momentum conservation, as

shown in figure 22, and a simple computation gives for the direct contribution

Sµ′ν′

∆3 = −
∫

d4k

(2π)4
Mµν

a
gµσ

k2

gντ

(k + p1 + p2)2
Γσµ′ν′τ

∆3

= i

∫
d4k

(2π)4
v̄(p2)γ

ν (k + p1)ρ
(k + p1)2

γργµu(p1)
1

k2

1

(k + p1 + p2)2

×an

3
ε[µ′, µ,−p4, k]

an

3(k − p4)4
ε[ν ′, ν,−p124, k + p1 + p2]
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Figure 21: Box-like contribution coming from the process show in figure 19.

= i
a2

n

9
ǫ[µ′, µ,−p4, α]ǫ[ν ′, ν,−p124, β]v̄(p2)γ

νγργµu(p1)

×
∫

d4k

(2π)4
1

k2(k + p1)2(k + p1 + p2)2(k − p4)4
(k + p1)

ρkα(k + p1 + p2)
β

= iT ρµ′ν′αβ

∫
d4k

(2π)4
1

A1A2A3A2
4

(kρkαkβ+kρkαpβ
1 +kρkαpβ

2 +pρ
1k

αkβ +pρ
1k

αpβ
1 +pρ

1k
αpβ

2 )

≡ iT ρµ′ν′αβ
(
JD

ραβ + pβ
1J

D
ρα + pβ

2J
D
ρα + pρ

1J
D
αβ + pρ

1p
β
1J

D
α + pρ

1p
β
2J

D
α

)
(3.25)

where Ai denote, in ordered sequence, the propagators. This amplitude can be computed

explicitly, as we illustrate in the appendix.

There are some interesting aspects that emerge in the evaluation of these integrals

already at 1-loop level. First of all, the combination of the anomaly vertex and of the pole

counterterm introduces a Ward identity which trivializes one of the momentum integration,

removing the triangle subdiagram from the counterterm graph. The original 2-loop dia-

gram is then reduced to a single 1-loop integration but with propagators of higher powers.

The expansion that follows shares therefore the characteristics of an ordinary perturba-

tive expansion of higher order, in which higher powers of the propagators appear quite

naturally.

If, in an ordinary perturbative expansion at 2-loop level and higher, we combine the

integration by parts and the usual tensor decomposition of the integrals, trading loop

integrals for higher powers of the propagators, as shown in the appendix, we end up with

a perturbative expansion with propagators of arbitrary powers. Therefore, unsurprisingly,

the formulation of ordinary perturbative field theories at higher order can be based on a

perturbative expansion containing propagators of higher powers. Anomalous field theories

treated with the GS prescription are not, from this perspective, that exceptional.

4. WZ and GS interactions, anomalous magnetic moment of the muon

and muonium

Having clarified some of the subtle issues characterizing a perturbative expansion with GS

vertices, we move to discuss the role played by the GS and the WZ mechanism in g − 2 of

the muon and in muonium. This is the case where the L/T decomposition of the anomaly
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Figure 22: Representation of the momentum parametrization for the box-like amplitude.

Z’

Z’

(c)(b)(a)

γ γ γ

Figure 23: Higher order contributions to the muon magnetic moment in the GS case.

amplitude shows its direct relevance and the role of the GS and WZ vertices can be easily

worked out.

Our aim is not to proceed with a complete study of these corrections, some of which

require a separate study, but to highlight the role played by the two mechanisms in the

context of specific processes which can be accurately quantified in future studies. The

possibility of searching for anomalous extra Z ′ and axions in precision measurements of

several observables is challenging but realistic.

4.1 The GS case

We show in figures 23 and 27 some of the lowest order GS contributions to the anomalous

magnetic moment of the muon and to the hyperfine splitting of muonium. Some of the

recent theoretical attention to aµ ≡ g−2 has been focused on the study of effects at 2-loop

level and higher, such as those shown in figure 23a and 23d. The first indicates generically

the hadronic contributions coming from self-energy insertions in the lowest order vertex.

Of these types are also the corrections coming from the self-energy graphs involving GS

vertices. The corrections are tiny, being of order g8 and their computation involves a 4-loop

graph with ordinary propagators (the 2-triangle diagram of figure 14) and 2-loop graphs

related to the pole counterterms that we have studied in the analysis of the self-energy.

Clearly, the underlying lagrangean should allow an anomalous extra Z ′ in the spectrum.

Working models of this type have been studied previously, and include several anomalous

U(1)′s, such as in the case of intersecting branes. The presence of a physical axion that

mixes with the Higgs sector (called “axi-Higgs” in [4]) via a kinetic Stückelberg term (and

eventually a Peccei-Quinn breaking term) makes these models quite attractive. The axi-

Higgs is massless in the first case and massive in the second case. Models with an axi-Higgs

are constructed using only WZ interactions and not GS interactions.
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Figure 24: Leading order corrections to the anomalous magnetic moment of the muon.
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Figure 25: Higher order corrections to the anomalous magnetic moment of the muon with a WZ

vertex.

γ

Z’
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γ

(b)

γ

(c)

Figure 26: As in figure 25 for a GS vertex.

4.2 Anomalous corrections to aµ

The evaluation of the anomalous corrections to aµ in the GS and WZ cases are quite

different. In the WZ case there is a larger set of contributing graphs due to the interaction

of the axion with the fermions and involve the exchange of an axi-Higgs (massless or

massive), which is proportional to the fermion mass. The simplest corrections due to

the presence of an anomalous extra Z ′ are shown in figure 24. These do not involve the

anomaly diagram and are the leading ones. They have been computed in [27]. Higher order

corrections are those shown in figure 25, also involving a physical axi-Higgs.

It is convenient to describe in some detail the structure of the perturbative expansion

at higher orders to emphasize the differences between the two mechanisms.

The structure of the expansion can be grasped more easily if we work in the chiral

limit (all the fermions are taken to be massless) and focus our attention, for example, on

graph (b) in figure 23 since in this case there is no direct point-like interaction of the axion
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Figure 27: Hadronic contributions (a), higher order anomalous contributions (b) and light-by-light

contributions (c) to the hyperfine splitting in muonium.
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Figure 28: Leading contributions to the hyperfine splitting in muonium and denoted as Ni, with

i=a,b,c,d in the WZ case.

with the fermion. If we decide to cancel the anomaly with WZ counterterms, we know that

we can draw a counterterm diagram in which the axion is emitted and absorbed by the

gauge line. In this case it is clear that the anomaly is potentially harmful and only a direct

computation is able to show if the counterterm is zero or not. In this specific diagrams we

know that explicit pole counterterms are needed, as we have shown in the previous sections.

If we consider diagram (c), however, the application of this argument shows immediately

that the anomaly, in this case, is harmless, since there is no axion counterterm of WZ

type that we can draw. A similar result is obtained for diagram (a) in figure 25. Also in

this case we are unable to draw a WZ counterterm in which the axion is attached only to

gauge lines. Therefore this diagram is also well defined even in the presence of an anomaly

diagram, since its longitudinal part cancels automatically due to the topology of the graph.

In these last two diagrams the gauge lines have to be attached in all possible ways to the

muon lines for this to happen. Diagram (c) appears in the massive case, but it is not a

counterterm.

Coming to the GS case in the massive fermion case, the anomaly diagram develops a

mass-dependence in the residue of the anomaly pole, shown in graph (c) of figure 26. As

we are going to show in the next section, this is not an anomaly counterterm. The only

counterterm is still given only by diagram (b). More details will be given below and in the

final section.

5. 2-loop contributions to g − 2: anomalous diagrams

In this section we briefly analyze the general structure of these corrections for both mech-

anisms when anomaly diagrams are present. The analysis that we follow is close to the

discussions for g − 2 presented in [36 – 38], adapted to our case. Most of the physical
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Figure 29: Explicit (higher order) expansion of the diagram in figure 27c for a trilinear WZ vertex.

Each amplitude is denoted as Mi with i=a,b,c,d in the text with p1, p
′

1 as incoming momenta and

p2, p
′

2 as outcoming ones.

discussion carried out in these papers, in the case of the muon anomalous magnetic mo-

ment, has to do with the identification of the effects due to chiral symmetry breaking in

the computation of the anomaly diagrams, which are related both to perturbative and to

non-perturbative effects, treated within the operator product expansion. In our case we

will be interested only in the perturbative contributions with the GS and WZ vertices.

We will point out the differences compared to those previous studies while reviewing their

derivation in order to be self-contained. In the GS case the anomaly diagram, corrected

by the pole subtraction, does not satisfy any longer the Vainshstein relation [39] between

the longitudinal (wL(q2)) and transverse (wT (q2)) component of the anomaly vertex

wL(q2) = 2wT (q2), (5.1)

which is obtained in a specific kinematical limit of the anomaly diagram. In particular, in

the chiral limit, the longitudinal component wL of the GS vertex is zero. Away from the

chiral limit a pole O(1/q4) reappears, multiplied by additional contributions proportional

to the fermion mass squared (m2
f ), but it is not an anomaly pole. The separation between

L and T components, away from the chiral limit, for mf 6= 0, can be done in several

ways. In [37] this is obtained by isolating the anomalous pole contribution from the rest.

After the subtraction of the pole term, the new anomaly-free vertex is still not transverse

and satisfies a broken Ward identity. The truly transverse component (w̃T ) is isolated by

acting with a specific projection on the vertex, as we shall see below. This assumes a

special form in the limit in which one of the photons is on-shell (k2 → 0) and soft (k → 0).

It can be expressed in terms of a set of scalar diagrams which come from the rank-2 tensor

decomposition of the fermionic triangle (Cij), and which are well-known in the literature.

The explicit expressions of these integrals, which are for instance given in [40], are singular

in the soft/on-shell photon limit that is needed in order to extract their contribution to

g−2. This is the reason for the re-analysis of these contributions using the operator product

expansion (OPE), which in this case follows the approach of [36, 37]. In our case, both

for the GS and WZ vertices, the OPE analysis would be similar, and can be performed on

the two currents carrying large momentum (q2 → ∞), therefore we omit it. In the WZ

case the pseudoscalar exchanges involve a Goldstone and a physical axion, this second one

being not present in the SM.
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We start our analysis by stating our conventions. The coupling of the extra neutral

current to the fermions is given by

− ig2
4 cos θW

ψ̄i

(
gZ,Z′

V γµ + gZ,Z′

A γµγ5
)
ψiVµ (5.2)

where the vector boson Vµ stays for the Z or the Z ′ and the vector and the axial-vector

couplings can be written as

−ig2
4cw

γµgV
Z′,j =

−ig2
cw

1

2

[
−εc2wTL,j

3 + εs2w

(
Ŷ j

L

2
+
Ŷ j

R

2

)
+
gz

g2
cw

(
ẑL,j

2
+
ẑR,j

2

)]
γµ

−ig2
4cw

γµγ5gA
Z′,j =

−ig2
cw

1

2

[
εc2wT

L,j
3 + εs2w

(
Ŷ j

R

2
− Ŷ j

L

2

)
+
gz

g2
cw

(
ẑR,j

2
− ẑL,j

2

)]
γµγ5. (5.3)

Here j is an index which represents the quark or the lepton and we have set sin θW =

sw, cos θW = cw for brevity. We denote with ẑR,L the charges of the fermions under the extra

anomalous U(1) and with gz the coupling constant of the anomalous gauge interaction [41].

The electroweak vertex that we need to compute in order to take into account the

corrections to the anomalous magnetic moment of the muon, due to the exchange of an

extra anomalous Z ′, in analogy with the discussion presented in [37], is given by

〈µ̄(p′)|ρem(0)|µ(p)〉 = ū(p′)Γρ(p
′, p)u(p)

=

∫
d4q

(2π)4
−i
q2

−i
(p′ − p− q)2 −M2

Z

(−ie)(−ie)
(

ig2
4 cos θW

)( −ig2
4 cos θW

)

×ū(p′)
[
γµ i

6p′ − 6q −mµ
gZ′

A,µγ
νγ5 + gZ′

A,µγ
νγ5

i

6p + 6q −mµ
γµ

]
u(p)

×
∫
d4x eiq.x

∫
d4y ei(p

′−p−q).y〈0|T{Aγ
µ(x)Z ′

ν(y)Aγ
ρ(0)}|0〉 , (5.4)

where

Aγ
µ(x) = q̄(x)γµQf q(x) , Z ′

ν(y) = q̄(y)γνγ5 g
Z′

A,f q(y) (5.5)

are the fermion currents of quarks, and gZ′

A,f refers to a quark of flavor f . The most general

CP invariant expression for a vertex function satisfying the current conservation is defined

by

Γµ = −ieū(p2)

[
F1(q

2)γµ + F2(q
2)

qα
4mµ

σαµ + F3(q
2)

(
qµq/ − γµq2

)
γ5

4M2
W

]
u(p1) (5.6)

where the coefficients Fi(q
2) are the form-factors and q = p2 − p1, MW and mµ denote

the mass of the W and of the muon, respectively. Taking the limit q2 → 0 in the Pauli

form-factor we obtain the value of the anomalous magnetic moment

a =
g − 2

2
= F2(0), (5.7)

and using the equation of motion we obtain [38]

Γµ = aaµ aµ = ieū(p2)
1

2mµ
(p1 + p2)µu(p1). (5.8)
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We can use a projection operator to extract F2(0)

F2(0) = lim
k2→0

Tr
{
(6p+mµ)Λρ

2(p
′, p)(6p′ +mµ)Γρ(p

′, p)
}
, (5.9)

where (p′ = p+ k)

Λρ
2(p

′, p) =
m2

µ

k2

1

4m2
µ − k2

γρ − mµ

k2

2m2
µ + k2

(4m2
µ − k2)2

(p+ p′)ρ (5.10)

is the projector on the Pauli form factor.

The triangle contribution is obtained from the 1-loop correlator of the electroweak

currents

(2π)4δ(p′ − p− q)∆µνρ
V AV (q, k) =

∫
d4x eiq.x

∫
d4y ei(p

′−p−q).y〈0|T{Aγ
µ(x)Z ′

ν(y)Aγ
ρ(0)}|0〉

(5.11)

with p′ the incoming photon four-momentum. The corresponding tensor structure of the

triangle in the k2 → 0 limit for a fermion of flavor f is given by [38], obtained from the

Rosenberg representation [33]

∆µνρ
V AV (q, k) −→ g

π2 cos θW
gZ′

A,f e
2Q2

f q
αqβSµνρ

αβ (k)

∫ 1

0
dx

x(1 − x)

x(1 − x)q2 −m2
f

Sµνρ
αβ (k) = −2kτε

τλµρ
(
gαλg

ν
β − gαβg

ν
λ

)
+ gαλε

λτνρ
(
kβg

µ
τ − gµ

βkτ

)
, (5.12)

where k = p′− p. This expression, in the GS case, is simply modified by the subtraction of

the longitudinal pole due to the anomaly. The tensor ∆µνρ
V AV (q, k) in momentum space is

affected by the longitudinal (anomaly) pole, similarly to the case of axial QED discussed

above, in the form of a longitudinal wL(q2) contribution [34]. In fact the asymptotic

behavior at large Q2 = −q2 is given by [36]

wf
L(Q2) =

g2
cos θW

gZ′

A,fe
2Q2

f

[
1

2π2Q2
− 2

m2
f

π2Q4
log

Q2

m2
f

+O

(
1

Q6

)]
, (5.13)

and in the GS case it becomes

wL
f (Q2)|GS = − g2

π2 cos θW
gZ′

A,fe
2Q2

f

[
2
m2

f

Q4
log

Q2

m2
f

+O

(
1

Q6

)]
. (5.14)

Following [37] we can always write

∆f
µνρ(q, k) = ∆µνρ(q, k)anomaly + ∆̃f

µνρ(q, k) , (5.15)

where

∆µνρ(q, k)anomaly =
∑

f

gZ′

A,fe
2Q2

fan
(q − k)ν
(q − k)2

ǫµραβq
αkβ , (5.16)

with an = −i/(2π2). The function ∆̃f
µνρ(q, k) is transverse with respect to the momenta

qµ and kρ

qµ∆̃f
µνρ(q, k) = 0 ,

kρ∆̃f
µνρ(q, k) = 0 , (5.17)
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but in the presence of massive fermions we isolate the longitudinal components of the

corresponding broken Ward identity

∆̃f
µνρ(q, k) = ∆̃f,long

µνρ (q, k) + ∆̃f,trans

µνρ (q, k) . (5.18)

Differentiating the 2nd expression in eq. (5.17) with respect to kρ we obtain

∆̃µνρ(q, k) = −kσ ∂

∂kρ
∆̃µνσ(q, k) (5.19)

where we have suppressed the flavor index f for simplicity. Since we are interested in

the soft photon limit, the relevant contributions are those linear in k. In [37] these are

extracted in the form

∆̃trans

µνρ (q, k) = kσ∆µνρσ(q) + . . . (5.20)

where the tensor ∆µνρσ(q) is obtained by using the projection operator Πνν′

as follows

Πνν′

(q, k) =

(
gνν′ − (q − k)ν

(q − k)2
(q − k)ν

′

)
,

∆µνρσ(q) = − ∂

∂kρ

(
Πνν′

∆µν′ρ

)
|lim k→0. (5.21)

It is not difficult to notice that

Πνν′

∆µν′ρ = Πνν′

∆̃µν′ρ. (5.22)

As we have already mentioned, the action of Πνν′

is to remove all the longitudinal parts

from the ∆µνρ tensor, including the anomalous term. ∆µνρσ(q) in (5.20) has the form

∆µνρσ(q) = i∆(Q2) [qρεµνασq
α − qσεµναρq

α] , (5.23)

where q2 = −Q2. We can now try to apply this formalism to the anomalous triangle

diagrams. We use the generic parametrization of a AV V triangle given in [40],

∆f
µνρ(q, k) = − g2

π2 cos θW
gZ′

A,fe
2Q2

f

[
A(k,−q,mf )(kρενµβσk

β − k2ενµρσ)(−q)σ

+A(−q, k,mf )(qµενρβσq
β − q2ενρµσ)kσ

−B(k,−q,mf )(q − k)νερµαβk
α(−q)β

]
, (5.24)

where the functions A(k,−q,mf ) and B(k,−q,mf ) are given in terms of the tensor-

reduction coefficients Cij as follows

A(k,−q,mf ) = (C11 − C12 + C21 − C23)(k,−q,mf )

B(k,−q,mf ) = (C12 + C23)(k,−q,mf ), (5.25)

and are defined in eq. (A.2), (A.3) of ref. [40]. The Ward identity on the axial-vector

current is given by

(q − k)ν∆f
µνρ(q, k) = − g2

π2 cos θW
gZ′

A,fe
2Q2

f

[
1

2
− 2m2

fC0

]
ερµαβk

α(−q)β (5.26)
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and the most general expression of the coefficient C0 is given in eq. (A.8) of ref. [40]. C0

is the scalar 3-point function with a fermion of mass mf circulating in the loop. In the

soft photon limit the invariant amplitude defined by the right-hand-side of (5.26) reduces

to (5.13).

The purely transverse part (formf 6= 0) is obtained by applying the projection operator

given in (5.21)

∆trans
µνρ (q, k) = −kσ ∂

∂kρ

(
Πνν′

(q, k)∆f
µνσ(q, k)

)
|lim k→0

= −kσ ∂

∂kρ
∆T

µνσ(q, k)|lim k→0, (5.27)

where

∆T
µνσ(q, k) = (5.28)

= A(k,−q,mf )

[
qαεαµνσk

2 − kν k
2

(q − k)2
εµσαβk

αqβ +
qν k

2

(q − k)2
εµσαβk

αqβ + kσεµναβk
αqβ

]

+A(−q, k,mf )

[
kαεαµνσq

2− kν q
2

(q − k)2
εµσαβk

αqβ+
qν q

2

(q − k)2
εµσαβk

αqβ−qµενσαβk
αqβ

]
.

Differentiating with respect to kρ and taking the lim k → 0 we obtain

∂

∂kρ
∆T

µνσ(q, k)|lim k→0 = A(Q2)
[
ερµνσq

2 + qνεµσρβq
β − qµενσρβq

β
]

= A(Q2) [qρεµνασq
α − qσεµναρq

α] , (5.29)

where A(Q2) denotes the soft limit of the A(−q, k,mf ) amplitude. The intermediate steps

to simplify the contribution to aµ are those of [42]. In our case, with the modifications

discussed above, the Pauli form-factor for a circulating fermion of flavor f we obtain

F2(0)|Z′ = (−e2) g2
2

16 cos2 θW

1

M2
Z′

lim
k2→0

∫
d4q

(2π)4
1

q2

(
M2

Z′

q2 −M2
Z′

)
× (5.30)

1

4k2
Tr

{
(6p +mµ)

[
γρ 6k −

(
kρ +

pρ

mµ
6k
)]

[
γµ (6p − 6q +mµ)

q2 − 2q ·p gZ′

A,µγ
νγ5 + gZ′

A,µγ
νγ5

(6p + 6q +mµ)

q2 + 2q ·p γµ

]}
×

gZ′

A,fQf

[
−i∆̃f,long

µνρ (q, k) + kσ [qρεµνασq
α − qσεµναρq

α]A(Q2)
]
,

where ∆̃f,long
µνρ is not anomalous and in the soft photon limit it is given by

∆̃f,long

µνρ (q, k) =
qν
q2
w̃f

Lεµρασq
αkσ (5.31)

where

w̃f
L = −

[
− 2

π2

m2
f

q4
log

(−q)2
m2

f

+O

(
1

q6

)]
. (5.32)
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It is obvious from this analysis that in presence of the Green-Schwarz mechanism there

is a 2-loop counterterm (see figure 26b) which removes the pure anomalous contribution

in eq. (5.30). Diagram c) in the same figure is the longitudinal part of the diagram and

appears in the broken Ward identity that we will discuss in the last section. Finally, after

some manipulations, similar to those performed in [32, 37, 43, 36], the final result for the

anomalous contributions to aµ takes the form

F2(0)|Z′ = (−e2Qf )
g2
2g

Z′

A,µg
Z′

A,f

16 cos2 θW

(
m2

µ

M2
Z′

)
1

4π2

∫ ∞

mµ

dQ2

(
w̃f

L(Q2) +
M2

Z′

Q2 +M2
Z′

A(Q2)

)
,(5.33)

where −q2 = Q2 and w̃f
L(Q2) vanishes in the chiral limit.

5.1 The Wess-Zumino counterterm

A similar analysis can be performed in the case of the WZ mechanism. The leading non

anomalous 1-loop contributions figure 24 have been calculated in [27] for a specific D-brane

model. These are due to the coupling of the axi-Higgs to the fermions. The organization

of the perturbative expansion for a theory with an axion-like particle has been discussed

in [5, 7], where the explicit cancellation of the gauge dependence has been discussed on

general grounds. We show in figure 25 the contribution coming from the Z ′ propagator

(graph a) in the anomalous exchange, the additional graphs b) and c) represent the axion

counterterm due to the WZ interaction (b) and the correction due to the coupling of

the axion to the massive fermions (c). We have omitted a graph similar to (c) in which

the exchanged pseudoscalar is a Goldstone and cancels the gauge dependence of the Z ′

propagator.

The computation of graph a) follows exactly the analysis of [37] and can be performed

in dimensional regularization in the unitary gauge, to give

λMS ≡ µd−4

16π2

[ 1

d− 4
− 1

2
( log 4π + 2 + Γ′(1))

]
, (5.34)

F2(0)
∣∣∣
(f)

anom

=
g2
2

16π2 cos2 θW

m2
µ

M2
Z′

1

4π2
Q2

fg
Z′,f
A ×

[
log

(
µ2

R

M2
Z′

)
−32π2λMS+log

(
M2

Z′

m2
µ

)
+

1

2

]
.

The expression of the extra contributions when a physical axion is exchanged are given by

F2(k
2)|(c)long

= eQµc
χ
µ lim

k2→0

∫
d4q

(2π)4
1

q2
1

(p′ − p− q)2 −M2
Z′

×

×ū(p′)
[
γµ 1

6p′ − 6q −mµ
γ5 + γ5

1

6p + 6q −mµ
γµ

]
u(p) ×

×


2

mµ

M2
Z′

∑

f

eQfc
χ
f

1

(q − k)2 −M2
χ


∆µρ(mf , q, k, q − k), (5.35)
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where cχf is the coupling of the axi-Higgs to the fermions and

∆µρ(mf , q, k, q − k) = εµραβq
αkβ

(
− 1

2π2

)
I(mf ) (5.36)

I(mf ) ≡ −
∫ 1

0

∫ 1−x

0
dxdy

1

m2
f + (x− 1)xq2 + (y − 1)yk2 − 2xyq · k .

Using the projection operator we get

F2(0)|(c)long
= eQµc

χ
µ lim

k2→0

∫
d4q

(2π)4
1

q2
1

(p′ − p− q)2 −M2
Z′

× 1

4k2
Tr

{
(6p+mµ)

[
γρ 6k −

(
kρ +

pρ

mµ
6k
)]

×
[
γµ 1

6p′ − 6q −mµ
γ5 + γ5

1

6p + 6q −mµ
γµ

]}

×


2

mµ

M2
Z′

∑

f

eQf c
χ
f

1

(q − k)2 −M2
χ


∆µρ(mf , q, k, q − k). (5.37)

The contribution coming from the diagram in figure 25b is similar to figure 25c and we

obtain

F2(0)|(b)long
= eQµc

χ
µ lim

k2→0

∫
d4q

(2π)4
1

q2
1

(p′ − p− q)2 −M2
Z′

× 1

4k2
Tr

{
(6p+mµ)

[
γρ 6k −

(
kρ +

pρ

mµ
6k
)]

×
[
γµ 1

6p′ − 6q −mµ
γ5 + γ5

1

6p + 6q −mµ
γµ

]}

×
[
−2

mµ

M2
Z′

gχ
γγ

1

(q − k)2 −M2
χ

]
εµραβq

αkβ , (5.38)

where the coefficient gχ
γγ is the coupling of the axi-Higgs to the photons and it will be given

explicitly in the next section together with the coefficient cχ.

5.2 Corrections to muonium

A similar analysis of the role played by both mechanisms in anomalous processes at higher

orders can be done in the case of muonium. A recent analysis of the hadronic effects in

this type of systems can be found in [44]. One of the typical contributions is given by

virtual light-by-light scattering, shown in figure 27. In the presence of anomalous gauge

interactions a dominant contribution for the GS case is given by diagram (b). Diagram

(c) is subdominant. This is expanded in terms single and double counterterms, typically

given in figure 30. In the WZ case we report some of the corresponding contributions in

figures 28 and 29, where we allow a coupling of the axi-Higgs to the fermions. The leading

contribution are diagrams (b) and (e) of figure 28, which are the analogue of (a) and (b)

of figure 24.
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The diagrams involving light-by-light scattering in the presence of a WZ vertex with

a physical axi-Higgs χ coupled to fermions are shown in figure 29; their expression can be

easily obtained by taking into account some recent results on 2-loop QCD corrections [31]

and a specific choice of parameters for an anomalous model developed and fully described

in [5, 6]. So we have

Ma = ū(p2)

[
e4
∑

f

gZ′af
Z′Q

2
f Λµ(s,mf ,me)

]
u(p1)

−i
k2 −M2

Z′

(
gµν − kµkν

M2
Z′

)

v̄(p′1)

[
e4
∑

f ′

gZ′af ′

Z′Q
2
f ′Λν(s,mf ′ ,mµ)

]
v(p′2), (5.39)

where the axial-vector vertex function Λµ(s,mf ,mext) is given [31] in terms of some coef-

ficients named G1 and G2 as

Λµ(s,mf ,mext) = γµγ5G1(s,mf ,mext) +
1

2mext
kµγ5G2(s,mf ,mext) (5.40)

and mext refers to the electron or the muon. Their explicit expression can be found in [31].

For Mb, with an axi-Higgs exchanged in the t-channel we obtain

Mb = ū(p2)

[
e2
∑

f

cχ,f
γγ Λ(s,mf ,me)

]
u(p1)

i

k2 −m2
χ

v̄(p′1)

[
e2
∑

f ′

cχ,f ′

γγ Λ(s,mf ′ ,mµ)

]
v(p′2),

(5.41)

with the general coupling of the physical axion

cχ,f
γγ = e2Q2

fc
χ,f , f = u, d, ν, e. (5.42)

and the pseudoscalar vertex function Λ(s,mf ,mext) [31]

Λ(s,mf ,mext) = γ5A(s,mf ,mext). (5.43)

We have used a condensed notation for the flavors in eq. (5.42) with u = {u, c, t}, d = {d,

s, b}, ν = {νe, νµ, ντ} and e = { e, µ, τ}, whose expansion yields

cχ,u = Γu i√
2
Oχ

11 =
mu

vu
iOχ

11, cχ,d = −Γd i√
2
Oχ

21 = −md

vd

iOχ
21,

cχ,ν = Γν i√
2
Oχ

11 =
mν

vu

iOχ
11, cχ,e = −Γe i√

2
Oχ

21 = −me

vd

iOχ
21, (5.44)

where the elements of the Oχ rotation matrix from the interaction to the mass eigenstate

basis are given in [6].

The most difficult to analyze are those of higher order, shown in figure 29

Mc = ū(p2)

[
e2
∑

f

cχ,f
γγ Λ(s,mf ,me)

]
u(p1)

i

k2 −m2
χ

v̄(p′1)F (s,mµ)gχ
γγe

2v(p′2) (5.45)

Md = ū(p2)F (s,me)g
χ
γγe

2u(p1)
i

k2 −m2
χ

v̄(p′1)F (s,mµ)gχ
γγe

2v(p′2), (5.46)
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e−

µ+

(a)

µ+

(b)

e−

µ+

(c)

e−

Figure 30: As in figure 29 for a GS vertex.

with the 1-loop anomalous vertex function F (s,mext) [31]

F (s,mext) = 2imextf(s,mext) γ5 (5.47)

where mext is the mass of the external fermion, in this case the muon mass, and the specific

choice of coupling given by

gχ
γγ =

[
F

M1
(OA

Wγ)2 +
CY Y

M1
(OA

Y γ)2
]
Oχ

31 (5.48)

in terms of model dependent parameters defined in [6].

The simplest corrections are those of figure 28 and can be written as

Na = ū(p2)(gZ′ae
Z′)γµγ5u(p1)

−i
k2 −M2

Z′

(
gµν − kµkν

M2
Z′

)
× (5.49)

×v̄(p′1)
[
e4
∑

f

gZ′af
Z′Q

2
fΛν(s,mf ,mµ)

]
v(p′2),

Nb = ū(p2)c
χ,eγ5u(p1)

i

k2 −m2
χ

v̄(p′1)c
χ,µγ5v(p′2), (5.50)

Nc = ū(p2)c
χ,eγ5u(p1)

i

k2 −m2
χ

v̄(p′1)F (s,mµ)gχ
γγe

2v(p′2), (5.51)

Nd = ū(p2)c
χ,eγ5u(p1)

i

k2 −m2
χ

v̄(p′1)

[
e2
∑

f

cχ,f
γγ Λ(s,mf ,mµ)

]
v(p′2), (5.52)

where the 1-loop functions Λν , F and Λ have been given above and can be found in the

literature.

6. The longitudinal subtraction and the broken Ward identities of the GS

vertex

There is one last important point that we will address in this final section which concerns

the correct interpretation of the anomaly counterterm in both (chiral) phases of theory.

The GS vertex satisfies a broken Ward identity, which is easy to derive diagrammatically.
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The identity is similar to that of the ordinary triangle diagram, but with a subtraction of

the (massless) anomaly pole. In the massless fermion case, the GS counterterm restores

the Ward identity on the anomaly vertex; in the massive case the mass-dependent terms

are a signal of chiral symmetry breaking, but are not counterterms. The only counterterm

is the anomaly pole. We briefly clarify this point.

We recall that, for on-shell photons (analogously for gluons) in an anomalous theory,

the pole contribution to the AV V triangle for s < 0 is given by

T λµν = gVKK
θKK
f g2

sTr[t
atb]kλε[k1, k2, µ, ν]

[
− 1

2π2s
−

m2
f

2π2s2
log2

(
ρf + 1

ρf − 1

)]

ρf =

√

1 −
4m2

f

s
(6.1)

and the anomalous Ward identity on the axial-vector line gives

kλT
λµν = gVKK

θKK
f g2

sTr[t
atb]

(
ε[k1, k2, µ, ν]

1

2π2
+ 2mfT

µν

)

T µν =
mf

2π2

∫ 1

0

∫ 1−x

0
dxdy

−ε[k1, k2, µ, ν]

m2
f − 2xyk1 · k2

. (6.2)

The second term in the Ward identity above, or Tµν , in a local gauge theory with sponta-

neous symmetry breaking (in an anomly-free theory), is determined by the BRS invariance

of the correlator. In an anomalous theory the first term is the anomaly, while the second

term comes from chiral symmetry breaking. If we use a WZ counterterm to restore the

gauge symmetry, the Ward identity is modified with the addition of the bF F̃ graph, and

the analysis can be found in [9]. Eq. 6.2 takes a more general form for off-shell gauge lines.

The general corrections to the anomaly pole are of the form

∆λµν = gVKK
θKK
f g2

sTr[t
atb]kλε[k1, k2, µ, ν]

[
− 1

2π2s
− 2m2

fC0(t, k
2
1 , k

2
2 ,mf )

]
(6.3)

where C0(t, k
2
1 , k

2
2 ,mf ) is the scalar triangle diagram. Also in this case the C0 terms are not

counterterms. We don’t need to add any mass-dependent term to the GS vertex to restore

the Ward identity of the non-local theory. These longitudinal contributions, following the

analysis of g − 2 [37] and the discussion of the previous sections, are easily interpreted as

the longitudinal parts of the non-anomalous components of the vertex, generated by the

breaking of the chiral symmetry.

There are two ways to write the broken Ward identity in GS case. The first form is

given by

kλ

(
∆λµν + Γλµν

GS

)
+ T µν = 0, (6.4)

in which the Tµν term, which is of the form (6.3), is derived simply by acting with the

Ward identity on the GS vertex (anomaly plus massless pole term) and bringing the result
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= 0

µ
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γ

γ

Figure 31: Broken Ward identity in the presence of a GS interaction.

to the first member. The chiral symmetry breaking corrections to the pole term are then

obtained from the decomposition

∆GS λµν = ∆̃λµν
long + ∆̃λµν

trans (6.5)

where

kλ∆̃λµν
long =

1

4π2
m2

fC0(t, k
2
1 , k

2
2 ,mf )ǫ[µ, ν, k1, k2] ≡ −T µν (6.6)

and

kλ∆̃λµν
trans = 0. (6.7)

A second form of the same equation is obtained by extracting a massless pole from Tµν

kλ

(
∆λµν + Γλµν

GS +
kλ

k2
T µν

)
= 0, (6.8)

whose explicit form is shown in figure 31. This result is in disagreement with [28], where

the authors write down an exact Ward identity for the GS vertex in the chirally broken

phase, identity which clearly does not exist, since the pole counterterm and the effects due

to chiral symmetry breaking should be kept separate.

There are other issues concerning the use of this vertex to describe the mixing of

the Kaluza-Klein excitations of gauge bosons to an axion, claimed to be relevant in tt̄

production, which also point toward an inconsistency of these types of formulations in

theories with extra dimensions and chiral delocalization on the brane. These quietly assume

that the GS vertex is generated by sewing together local-interactions (bF F̃ vertex and B b

mixing), which are claimed to be obtained from extra dimensional theories [28]. The

bilinear mixing is assumed to be physical (i.e. no gauge fixing condition can remove it). If

these constructions were consistent, this would imply that the anomaly can be removed by

adding a finite number of local interactions. Instead, the anomaly pole can be removed,

but at the expense of building a non-local theory. This result does not contradict the

use of the WZ mechanism for the ”cancellation” of the anomaly, since the WZ theory,

being local, generates an effective theory which is unitary only below a certain scale, while

remaining gauge invariant at all scales. The theory, in fact, needs to be amended by

higher dimensional operators for the restoration of unitarity, and therefore the description

of axion-like particle, involving Stückelberg axions and PQ interactions, are not unitary

at all scales. In fact, the number of local interactions needed to obtain an anomaly-free

theory is infinite, which is the price to pay for not having a pole counterterm as in the GS
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case. The presence of BIM amplitudes for the WZ mechanism provides a clear example of

processes with a non-unitary growth at high energy. We refer to [8] for more details on

some of these issues.

7. Conclusions

We have investigated the consistency of the subtraction of pole counterterm in an anoma-

lous theory, re-analysing the problem of the generation of double poles in the perturbative

expansion due to the extra subtractions, and in particular, in some s-channel exchanges.

Having the anomaly diagram a natural separation into longitudinal and transverse con-

tributions, the subtraction of the longitudinal component can be viewed simply as the

remotion of one of its independent invariant amplitudes. If the structure of a given graph

does not render the anomaly vertex harmless, the longitudinal subtraction is explicit, other-

wise the subtraction vanishes by itself, as does the longitudinal component of the anomaly

in that case.

In principle, the perturbative expansion for the GS vertex can be formulated directly

in terms of its transverse components. Away from the chiral limit there is still no anomaly

pole, and the decoupling of the anomaly should hold at all orders and also in the broken

chiral phase.

We have argued by explicit examples that the organization of the perturbative expan-

sion in terms of anomaly diagrams and pole counterterms (or DZ counterterms) is just a

matter of convenience, especially if a given computation has to be carried out to higher

orders. In this case, the double poles due to the counterterms have to be interpreted as

genuine contributions which are embedded in 2-loop graphs. We have pointed out that

the emergence of double poles is not an isolated case, but a standard result, common to a

specific way to address the tensor decomposition of a Feynman graph.

In this approach the computation of tensor integrals is performed using scalar integrals

with higher power of the denominators and then re-formulated in terms of suitable sets

of master integrals. Therefore, an ordinary perturbative expansion at 2-loop level - after

integration on one of the loop momenta - gives -with no surprise- a theory with propagators

of second order and higher.

A final comment goes to the high energy behaviour of the GS vertex. The good high

energy behaviour of the vertex is related to its gauge invariance, with BIM amplitudes which

are identically vanishing in the chiral limit. A similar feature is absent in the WZ case,

which violates unitarity at high energy. Finally, we have investigated the emergence of GS

and of WZ vertices in g−2 of the muon and in muonium, describing the differences between

the SM case and its anomalous extensions, involving one axion-like particle and an extra

anomalous Z ′, concentrating our attention, in particular, on the anomalous contributions,

which can be studied accurately in the future in view of the planned experiments on g− 2

at BNL. In general, in the WZ case, the leading contributions to g − 2 come from the

exchange of an axi-Higgs and an anomalous Z ′, while in the GS case they involve directly

the transverse components of the GS vertex. We hope to return with a quantitative analysis

of some of these contributions in the near future.

– 38 –



J
H
E
P
1
0
(
2
0
0
8
)
0
3
4

Acknowledgments

We thank Nikos Irges, George Sterman and Alan White for discussions and C. Anastasiou

for discussions and help with the use of his program AIR for the analysis of the tensor

reductions. The work of C.C. was supported (in part) by the European Union through the

Marie Curie Research and Training Network “Universenet” (MRTN-CT-2006-035863).

A. Some features of the GS and WZ vertices

We comment on the relation between the WZ and GS formulation.

There are several ways to parameterize an anomaly vertex (AVV), the most well known

being the one due to Rosenberg [33] which involves 6 invariant amplitudes (A1, A2, . . . A6),

two of which are ill-defined and determined by the Ward identities of the theory in terms

of the finite ones. The presence of an anomaly pole is not obvious in this formulation,

although its structure was clearly established by Dolgov and Zakharov in their work [30]

using dispersion relations. The basic interpretation of this result is that the anomaly is not

just an ultraviolet but also an infrared effect.

The extraction of the anomaly pole from the rest of the amplitude is not so evident

from the Rosenberg parameterization, but is quite obvious from the L/T formulation of

this vertex, discussed in section 2.4. As we have discussed in the same section, the GS

mechanism corresponds to a redefinition of the anomaly vertex. In plain words it means

that whenever we encounter an anomaly diagram we replace it with another vertex in

which the DZ pole has been explicitly removed. In a lagrangean formulation this operation

is equivalent to the addition of the counterterm shown in diagram c) of figure 1. We

stress once more that there is no direct coupling of the axion to the fermion, since in this

approach the axion is not an asymptotic state. As we have extensively discussed in the

previous sections this subtraction can be understood in a local version of the effective action

by using Federbush’s formulation of the GS mechanism with two pseudoscalars (eq. 2.3),

one of them being actually a ghost, with negative kinetic energy. This formulation could, in

principle, be extended so to describe a coupling of one of these two axions to the fermions.

In the WZ case the local counterterm bF ∧ F introduces the axion as an asymp-

totic state of the corresponding S-matrix. Therefore, the axion takes an important role in

the mechanisms of symmetry breaking, being this due either to a Higgs sector or to the

Stückelberg mechanism, or to both. For this reason, in the presence of electroweak symme-

try breaking, there is a direct coupling of the axion to the fermions via the corresponding

Yukawa couplings. One point which is worth to stress is that the WZ mechanism guaran-

tees the gauge invariance of the 1-loop effective action but not of the trilinear gauge vertex.

The differences between the two mechanisms can be seen rather clearly, for instance, by

comparing figure 29 and 30. Notice that fermion mass effects, in the WZ case, induced

either by chiral symmetry breaking and/or electroweak symmetry breaking cause a direct

interaction of the axion to the fermion. If they are both absent, then those diagrams in

which the axion couples to the fermions are trivially vanishing.
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A.1 Gauge choices

The cancellation of the gauge dependence in the perturbative expansion is rather trivial in

the GS case while it is less straightforward in the WZ case. In the first case, the redefinition

of the trilinear gauge vertex is sufficient to obtain from the beginning a gauge invariant

result. For this purpose we may work directly in the Rξ gauge, denoting with ξB the

gauge-fixing parameter. The gauge dependent propagator for the gauge field is given by

−i
k2

[
g λ λ′ − kλ kλ′

k2
(1 − ξB)

]
(A.1)

and the longitudinal components disappear whenever they are attached to a GS vertex, due

to the Ward identities satisfied on all the gauge lines. In the WZ case the cancellation of

the gauge dependence is more subtle and has been discussed extensively in [5]. We briefly

summarize here the way this cancellation is achieved. The analysis is rather technical but

can be grasped more easily using a simple model.

One of the working example is provided by the self-energy graph discussed in the main

section (see figure 14). There we have analyzed this diagram using the GS vertex and,

as we have just mentioned, it is straightforward to verify gauge invariance if we use this

vertex as a replacement for any anomalous triangle diagram, as shown in figure 13. In

the WZ case, instead, the cancellation of the gauge dependence involves the exchange of

the Stückelberg axion. This is shown in figure 32 in the case of a simple U(1)A × U(1)B
model with A vector-like and B axial-vector like (anomalous). The counterterm diagram

has interactions which are fixed by the requirement of gauge invariance of the anomalous

action by the inclusion of suitable axion counterterms such as bF ∧ F . Before symmetry

breaking the axion is a Goldstone mode and diagram (B) is necessary in order to cancel

the gauge dependence of diagram (A). After symmetry breaking, the b field has to be

decomposed into a Goldstone mode GB of the gauge field B and a physical axion χ. This

decomposition is discussed in [5]. The complete set of diagrams, in this case, is shown in

figure 33. We reproduce in this figure only the gauge dependent contributions, omitting the

(gauge independent) contributions due to the exchange of the physical axion. In particular

we assume here that B becomes massive via a combination of the Higgs and the Stückelberg

mechanisms. Notice that the set of graphs include also the coupling of the Goldstone to

the massive fermions. The derivation of the normalization for the counterterm and direct

proofs of gauge invariance for this and other similar graphs can be found in the same work.

B. Simplifications in some of the integrands on higher point functions

B.1 Computation of the diagrams in figure 9

We show the vanishing of the counterterms in figure 9. We have

Cλ
1 =

∫
d4k1

(2π)4
v̄(p2)γν

1

p/1 − k/1

γµu(p1)
1

k2
1

1

k2
2

Cµνλ
AV V (k1,−k2, k)

=

∫
d4k1

(2π)4
v̄(p2)γν

1

p/1 − k/1

γµu(p1)
1

k2
2

kµ
1

k4
1

an

3
ǫ[λ, ν, k, k2], (B.1)
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+
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Figure 32: Cancellations of the gauge dependence in a self-energy graph
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A
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k1

+
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k2
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k

A

GB

+

k1k1

GB,  k

A, k2

GB,  k

k1

A, k2

(D)

k1

(E)

GB

Figure 33: The complete set of diagrams in the broken phase.

with k2 = k − k1 so that

Cλ
1 = v̄(p2)γνu(p1)

an

3
ε[λ, ν, k, ρ]

∫
d4k1

(2π)4
kρ
1

(k − k1)2k4
1

, (B.2)

where the expansion of the integrand function yields a result proportional to the indepen-

dent momentum kρ and finally Cλ
1 = 0. The C2 counterterm vanishes in an analogous way

as Cλ
1 , so we take into account the last diagram in figure 9

Cλ
3 =

∫
d4k1

(2π)4
v̄(p2)γν

p/1 − k/1

(p1 − k1)2
γµu(p1)

1

k2
1

1

k2
2

Cλµν
AV V (−k,−k1,−k2), (B.3)

with k2 = k − k1 and Cλµν
AV V (−k,−k1,−k2) = an

3
kλ

k2 ǫ[µ, ν, k1, k2]. C
λ
3 is given by the sum

of a first-rank and a second-rank tensor integral which can be further reduced with the

well-known tensor-reduction technique. The general expansion for the two integrands is

∫
d4k1

(2π)4
kα
1

(p1 − k1)2k
2
1(k − k1)2

= C1p
α
1 + C2k

α (B.4)
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∫
d4k1

(2π)4
kα
1 k

β
1

(p1 − k1)2k
2
1(k − k1)2

= C00g
αβ + C12(p

α
1 k

β + pβ
1k

α) + C11p
α
1 p

β
1 + C22k

αkβ ;

first we notice all the terms proportional to kα trivially vanish after the contraction with

the antisymmetric Levi-Civita tensor in eq. (B.3) and then we conclude Cλ
3 = 0 by using

the following relations in eq. (B.3)

v̄(p2)γνp/1γµǫ[µ, ν, p1, k]u(p1) = 2i v̄(p2)(p
2
1k/ − k · p1p/1) γ

5u(p1) = 0, (B.5)

v̄(p2)γνγβγµǫ[µ, ν, β, k]u(p1) = 6i v̄(p2)k/ γ
5u(p1) = 0 , (B.6)

for massless external fermions with momenta p1 and p2 and k = p1 + p2.

B.2 Simplifications of the integrand in section 2.7

The third amplitude SC does not contribute to S, in fact we have

SC =

∫
d4k1

(2π)4

(
v̄(p2)γν

1

p/1 − k/1

k/1u(p1)
1

k2
2

1

k2
1

an

3

1

k2
1

ǫ[ν, λ, k2, k]

)
1

k2
BT λ

AAA

= −v̄(p2)γνu(p1)
an

3

∫
d4k1

(2π)4

(
1

(k − k1)2
1

k4
1

ǫ[ν, λ, k − k1, k]

)
1

k2
BT λ

AAA

= v̄(p2)γνu(p1)
an

3
ǫ[ν, λ, ρ, σ]kσ

∫
d4k1

(2π)4

(
kρ
1

(k − k1)2k4
1

)
1

k2
BT λ

AAA

∝ v̄(p2)γνu(p1)
an

3
ǫ[ν, λ, k, k]

1

k2
BT λ

AAA = 0, (B.7)

where by the tensor integral decomposition we obtain the following result

ǫ[ν, λ, ρ, σ]kσ

∫
d4k1

(2π)4

(
kρ
1

(k − k1)2k4
1

)
= ǫ[ν, λ, ρ, σ]kσBkρ = 0. (B.8)

Here we omit the explicit form of the coefficient of the rank-1 tensor decomposition B,

since it is not essential for the calculation. We can apply the same arguments to prove that

SC = 0.

C. Tensor reductions with higher order poles

Trading tensor decompositions in favour of propagators with higher powers is a standard

result [45]. Our aim, here is to illustrate how the computations with explicit GS counter-

terms proceed. The perturbative expansion that follows, as we have mentioned above, is

the one typical of a computation at higher order (2-loop and higher). Here we outline the

procedure for the counterterms of figure 19 starting from rank-1.

C.1 Rank-1

We consider diagrams with products of generic propagators in the general form

1

Aν1

1 A
ν2

2 A
ν3

3 A
ν4

4

(C.1)
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for the specific choice ν1 = ν2 = ν3 = 1 and ν4 = 2.

A1 = k2 A2 = (k + p1)
2 A3 = (k + p1 + p2)

2 A4 = (k − p4)
2. (C.2)

In the amplitude we can isolate the following different tensor structures

JD =

∫
Dx I, (C.3)

JD
α =

∫
Dx χαI, (C.4)

JD
αβ =

∫
Dx

(
χαχβ − 1

2P
gαβ

)
I, (C.5)

JD
αβρ =

∫
Dx

(
χαχβχρ − 1

2P

{
gαβχρ + gαρχβ + gβρχα

})
I, (C.6)

with

∫
Dx =

4∏

i=1

(−1)νi

Γ(νi)

∫ ∞

0
dxix

νi−1
i (C.7)

χα = −d
α

P
= − [pα

1x2 + (p1 + p2)
αx3 − pα

4x4]

P
, P = x1 + x2 + x3 + x4, (C.8)

I =
1

PD/2
exp (Q/P ) , in the massless case Q = x1x3s+ x2x4t, (C.9)

where the usual Mandelstam variables are s = (p1 + p2)
2 = 2p1 · p2 and t = (p1 + p4)

2 =

2p1 · p4. For the the rank-1 integral JD
α we have

JD
α =

∫
Dx χαI = −pα

1J
D
2 − (p1 + p2)

αJD
3 + pα

4 JD
4 , (C.10)

where, because of the antisymmetry of the Levi-Civita symbol ε[µ′, µ,−p4, α] in eq. (3.25),

we don’t need to compute explicitly the integral pα
4J

D
4 as

ε[µ′, µ,−p4, α]JD
α = ε[µ′, µ,−p4, α]

{
−pα

1J
D
2 − (p1 + p2)

αJD
3

}
. (C.11)

Therefore we have

JD
2 ≡ JD

2 (s, t) =

4∏

i=1

(−1)νi

Γ(νi)

∫ ∞

0
dx1dx2dx3dx4x

ν1−1
1 xν2−1

2 xν3−1
3 xν4−1

4

1

P
x2

1

PD/2
exp (Q/P )

= −ν2J
D+2(ν1, ν2 + 1, ν3, ν4; s, t) = −JD+2(1, 2, 1, 2; s, t) (C.12)

JD
3 ≡ JD

3 (s, t) =

4∏

i=1

(−1)νi

Γ(νi)

∫ ∞

0
dx1dx2dx3dx4x

ν1−1
1 xν2−1

2 xν3−1
3 xν4−1

4

1

P
x3

1

PD/2
exp (Q/P )

= −ν3J
D+2(ν1, ν2, ν3 + 1, ν4; s, t) = −JD+2(1, 1, 2, 2; s, t), (C.13)

where we have used the following identity

(−1)νixνi−1

Γ(νi)
xi = −νi

(−1)νi+1xνi

Γ(νi + 1)
. (C.14)
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We start now the direct evaluation of the two scalar integrals involved in the reduction,

that is JD+2(1, 2, 1, 2; s, t) and JD+2(1, 1, 2, 2; s, t).

For both the integrals we haveD+2 = 6−2ǫ andN =
∑

i νi = 6, while the specific choices of

the indices are ν1 = ν3 = 1, ν2 = ν4 = 2 for JD+2(1, 2, 1, 2; s, t) and ν1 = ν2 = 1, ν3 = ν4 = 2

for JD+2(1, 2, 1, 2; s, t); their complete expressions in terms of few master integrals after

the dimensional regularization and the analytic continuation in the physical region s > 0

and t < 0 are

JD+2(1, 2, 1, 2; s, t) = −4BubD+2(s)(D−6)(D−3)(D−1)

(D−4)s2t2
+

8BubD+2(t)(D−3)(D−1)

(D−4)st3

+
BoxD+2(s, t)(D − 3)((D − 6)s − 2t)

st2
, (C.15)

JD+2(1, 1, 2, 2; s, t) = −4BubD+2(s)(D−1)(D−3)

s3t
− 4BubD+2(t)(D−1)(D−3)

st3

+
BoxD+2(s, t)(D − 4)(D − 3)

st
. (C.16)

The explicit expressions of the scalar box and self-energy in several dimensions are given be-

low.

C.2 Rank-2

In this section we deal with the rank-2 tensor integral of the form

JD
αβ =

∫
Dx

(
χαχβ − 1

2P
gαβ

)
I

= pα
1 p

β
1J

D
22 + (2pα

1 p
β
1 + pβ

1p
α
2 + pβ

2p
α
1 )JD

23 − (pα
4 p

β
1 + pα

1 p
β
4 )JD

24

+(pα
1 p

β
1 + pα

1 p
β
2 + pβ

1p
α
2 + pβ

2p
α
2 )JD

33 − (pα
1 p

β
4 + pα

2 p
β
4 + pβ

1p
α
4 + pβ

2p
α
4 )JD

34

+pα
4 p

β
4J

D
44 −

gαβ

2
JD+2, (C.17)

where as in the previous case we don’t need to compute explicitly the contributions pro-

portional to the momentum pα
4 , because of the antisymmetry of the Levi-Civita tensor

ε[µ′, µ,−p4, α] so that we’re left with the following contributions in eq. (3.25)

ε[µ′, µ,−p4, α]JD
αβ (C.18)

= ε[µ′, µ,−p4, α]

{
pα
1 p

β
1J

D
22 + (2pα

1 p
β
1 + pβ

1p
α
2 + pβ

2p
α
1 )JD

23 − pα
1 p

β
4J

D
24

+(pα
1 p

β
1 + pα

1 p
β
2 + pβ

1p
α
2 + pβ

2p
α
2 )JD

33 − (pα
1 p

β
4 + pα

2 p
β
4 )JD

34 −
gαβ

2
JD+2

}
.

For the integrals

JD
22 ≡ JD

22(s, t) = ν2 (ν2 + 1)JD+4 (ν1, ν2 + 2, ν3, ν4; s, t) = 2JD+4(1, 3, 1, 2; s, t), (C.19)

JD
23 ≡ JD

23(s, t) = ν2 ν3 JD+4 (ν1, ν2 + 1, ν3 + 1, ν4; s, t) = JD+4(1, 2, 2, 2; s, t), (C.20)

JD
24 ≡ JD

24(s, t) = ν2 ν4 JD+4(ν1, ν2 + 1, ν3, ν4 + 1; s, t) = 2JD+4(1, 2, 1, 3; s, t), (C.21)
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JD
33 ≡ JD

33(s, t) = ν3 (ν3 + 1)JD+4(ν1, ν2, ν3 + 2, ν4; s, t) = 2JD+4(1, 1, 3, 2; s, t), (C.22)

JD
34 ≡ JD

34(s, t) = ν3 ν4 JD+4(ν1, ν2, ν3 + 1, ν4 + 1; s, t) = 2JD+4(1, 1, 2, 3; s, t), (C.23)

JD+2 ≡ JD+2(s, t) = JD+2(1, 1, 1, 2; s, t), (C.24)

where we have used the identity in eq. (C.14) and its extension of the form

(−1)νixνi−1

Γ(νi)
x2

i = νi(νi + 1)
(−1)νi+2xνi+1

Γ(νi + 2)
. (C.25)

The reduction in terms of bubble and box master integrals is

JD+4(1, 3, 1, 2; s, t) =
2BubD+4(s)(D − 3)(D − 1)(D + 1)

(D − 4)(D − 2)s3t3
[
s(D + 4)2

+ (−18s−2t)(D+4)+80s+12t]− 8BubD+4(t)(D−3)(D−1)(D+1)

(D − 2)st4

−Box
D+4(s, t)(D − 3)(D − 1)((D − 6)s − 4t)

2st3
(C.26)

JD+4(1, 2, 2, 2; s, t) =
4BubD+4(t)(D − 3)(D − 1)(D + 1)

(D − 4)(D − 2)s2t4
[
s(D + 4)2

+ (−16s− 2t)(D + 4) + 60s + 16t]

+
4BubD+4(s)(D − 4)(D − 3)(D − 1)(D + 1)

(D − 2)s3t2

−Box
D+4(s, t)(D − 3)(D − 1)((D − 4)s − 2t)

s2t2
(C.27)

JD+4(1, 2, 1, 3; s, t) =
2BubD+4(s)(D − 3)(D − 1)(D + 1)

(D − 4)(D − 2)s3t3
[
s(D + 4)2

+ (−18s− 2t)(D + 4) + 80s + 12t]

−8BubD+4(t)(D − 3)(D − 1)(D + 1)

(D − 2)st4

−Box
D+4(s, t)(D − 3)(D − 1)[(D − 6)s − 4t]

2st3
(C.28)

JD+4(1, 1, 3, 2; s, t) =
2BubD+4(t)(D − 3)(D − 1)(D + 1)

[
t(D + 4)2 + 2s− 8t

]

(D − 4)s2t4

+
2BubD+4(s)(D − 3)(D + 1)(D − 1)

s4t

−Box
D+4(s, t)(D − 3)(D − 2)(D − 1)

2s2t
(C.29)

JD+4(1, 1, 2, 3; s, t) =
2BubD+4(s)(D − 3)(D − 1)(D + 1)[(D + 4)s− 8s + 2t]

(D − 4)s4t2

+
2BubD+4(t)(D − 3)(D + 1)(D − 1)

st4

−Box
D+4(s, t)(D − 3)(D − 2)(D − 1)

2st2
(C.30)

JD+2(1, 1, 1, 2; s, t) =
4BubD+2(s)(D − 3)(D − 1)

(D − 4)s2t
+
BoxD+2(s, t)(3 −D)

t
, (C.31)
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with D = 4 − 2ǫ and ǫ > 0. A similar approach can be followed also for the lengthier

integrals of rank-3. Details can be found in appendix C.3. It is evident, from this analysis,

that a theory with GS counterterms has all the characteristics of a typical higher order

perturbative expansion. This should not be so surprising since the pole counterterm is a

1-loop effect and our expansion therefore is essentially composed of 2-loop graphs.

C.3 Rank-3

The complete third rank tensor integral has the form

JD
αβρ =

∫
Dx

(
χαχβχρ − 1

2P

{
gαβχρ + gαρχβ + gβρχα

})
I, (C.32)

where
∫
Dx

(
χαχβχρ

)
I

= −pα
1 p

β
1p

ρ
1J

D
222−

(
3pα

1 p
β
1p

ρ
1+pβ

1p
α
2 p

ρ
1+pα

1 p
β
2p

ρ
1+pα

1 p
β
1p

ρ
2

)
JD

322+
(
pα
1 p

ρ
1p

β
4 +pα

1 p
β
1p

ρ
4

)
JD

422

−
(
3pα

1 p
β
1p

ρ
1 + 2pβ

1p
α
2 p

ρ
1 + 2pα

1 p
β
2p

ρ
1 + pα

2 p
β
2p

ρ
1 + 2pα

1 p
β
1p

ρ
2 + pβ

1p
α
2 p

ρ
2 + pα

1 p
β
2p

ρ
2

)
JD

332

+
(
2pα

1 p
ρ
1p

β
4 + pρ

1p
α
2 p

β
4 + pα

1 p
ρ
2p

β
4 + 2pα

1 p
β
1p

ρ
4 + pβ

1p
α
2 p

ρ
4 + pα

1 p
β
2p

ρ
4

)
JD

342 − pα
1 p

ρ
4p

β
4J

D
442

−
(
pα
1 p

β
1p

ρ
1 + pβ

1p
α
2 p

ρ
1 + pα

1 p
β
2p

ρ
1 + pα

2 p
β
2p

ρ
1 + pα

1 p
β
1p

ρ
2 + pβ

1p
α
2 p

ρ
2 + pα

1 p
β
2p

ρ
2 + pα

2 p
β
2p

ρ
2

)
JD

333

+
(
pα
1 p

ρ
1p

β
4 + pρ

1p
α
2 p

β
4 + pα

1 p
ρ
2p

β
4 + pα

2 p
ρ
2p

β
4 + pα

1 p
β
1p

ρ
4 + pβ

1p
α
2 p

ρ
4 + pα

1 p
β
2p

ρ
4 + pα

2 p
β
2p

ρ
4

)
JD

334

−
(
pα
1 p

ρ
4p

β
4 + pα

2 p
ρ
4p

β
4

)
JD

344, (C.33)

and
∫
Dx

(
− 1

2P

){
gαβχρ + gαρχβ + gβρχα

}
I

=
gαβ

2

[
−pρ

1J
D
2 − (p1 + p2)

ρJD
3 + pρ

4J
D
4

]
+
gαρ

2

[
−pβ

1J
D
3 − (p1 + p2)

βJD
3 + pβ

4J
D
4

]

+
gβρ

2

[
−pα

1J
D
2 − (p1 + p2)

αJD
3

]
, (C.34)

recalling that in the last term we have omitted the contribution coming from

pα
4 JD+2(1, 1, 1, 3; s, t) thanks to the antisymmetry of the tensor ε[µ′, µ,−p4, α].

The JD integrals with three indices in eq. (C.33) are defined as

JD
222 ≡ JD

222(s, t) = −ν2(ν2 + 1)(ν2 + 2)JD+6(ν1, ν2 + 3, ν3, ν4; s, t)

= −6JD+6(1, 4, 1, 2; s, t), (C.35)

JD
322 ≡ JD

322 = −ν3ν2(ν2 + 1)JD+6(ν1, ν2 + 2, ν3 + 1, ν4; s, t)

= −2JD+6(1, 3, 2, 2; s, t), (C.36)

JD
422 ≡ JD

422(s, t) = −ν4ν2(ν2 + 1)JD+6(ν1, ν2 + 2, ν3, ν4 + 1; s, t)

= −4JD+6(1, 3, 1, 3; s, t), (C.37)
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JD
332 ≡ JD

332(s, t) = −ν3(ν3 + 1)ν2J
D+6(ν1, ν2 + 1, ν3 + 2, ν4; s, t)

= −2JD+6(1, 2, 3, 2; s, t), (C.38)

JD
342 ≡ JD

342(s, t) = −ν3ν4ν2J
D+6(ν1, ν2 + 1, ν3 + 1, ν4 + 1; s, t)

= −2JD+6(1, 2, 2, 3; s, t), (C.39)

JD
442 ≡ JD

442(s, t) = −ν4(ν4 + 1)ν2J
D+6(ν1, ν2 + 1, ν3, ν4 + 2; s, t)

= −6JD+6(1, 2, 1, 4; s, t), (C.40)

JD
333 ≡ JD

333(s, t) = −ν3(ν3 + 1)(ν3 + 2)JD+6(ν1, ν2, ν3, ν4 + 3; s, t)

= −6JD+6(1, 1, 1, 5; s, t), (C.41)

JD
334 ≡ JD

334(s, t) = −ν3(ν3 + 1)ν4J
D+6(ν1, ν2, ν3 + 2, ν4 + 1; s, t)

= −4JD+6(1, 1, 3, 3; s, t), (C.42)

JD
344 ≡ JD

344(s, t) = −ν3ν4(ν4 + 1)JD+6(ν1, ν2, ν3 + 1, ν4 + 2; s, t)

= −6JD+6(1, 1, 2, 4; s, t), (C.43)

where we have used the following property

(−1)νixνi−1

Γ(νi)
x3

i = −νi(νi + 1)(νi + 2)
(−1)νi+3xνi+2

Γ(νi + 3)
. (C.44)

The integrals appearing in eq. (C.34) have been partially computed in the section relative

to the one-rank tensor integral decomposition. From eqs. (C.12) and (C.13) we have indeed

JD
2 ≡ −JD+2(1, 2, 1, 2; s, t) (C.45)

JD
3 ≡ −JD+2(1, 1, 2, 2; s, t) (C.46)

and the remaining one is

JD
4 =

4∏

i=1

(−1)νi

Γ(νi)

∫ ∞

0
dx1dx2dx3dx4x

ν1−1
1 xν2−1

2 xν3−1
3 xν4−1

4

1

P
x4

1

PD/2
exp (Q/P )

= −JD+2(1, 1, 1, 3; s, t) . (C.47)

The last step to be accomplished refers to the reduction in terms of master integrals for all

the JD involved in the computation

JD+6(1, 4, 1, 2; s, t) = −2BubD+6(s)(D−1)(D+1)(D+3)

3(D−4)Ds4t4
× (C.48)

×
[
s2(D+6)3+

(
−30s2−4ts

)
(D+6)2

+
(
296s2+64ts−4t2

)
(D+6)−960s2+24t2−240st

]

+
4BubD+6(t)(D − 2)(D − 1)(D + 1)(D + 3)

Dst5

+
BoxD+6(s, t)(D − 2)(D − 1)(D + 1)((D + 6)s− 12s − 6t)

6st4
,
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JD+6(1, 3, 2, 2; s, t) = −2BubD+6(s)(D − 1)(D + 1)(D + 3)

Ds4t3
× (C.49)

×
[
s(D + 6)2 + (−18s − 2t)(D + 6) + 80s+ 12t

]

Ds4t3

−2BubD+6(t)(D − 1)(D + 1)(D + 3)

Ds2t5
×

×
[
s(D + 6)2 + (−18s − 4t)(D + 6) + 72s+ 32t

]

Ds2t5

+
BoxD+6(s, t)(D − 2)(D − 1)(D + 1)[(D + 6)s− 10s − 4t]

2s2t3
,

JD+6(1, 3, 1, 3; s, t) = −Bub
D+6(s)(D − 4)(D − 1)(D + 1)(D + 3)

(D − 2)Ds3t4
[
s(D + 6)2

+(−20s − 6t)(D + 6) + 96s + 40t]

+
8BubD+6(t)(D − 1)(D + 1)(D + 3)

4s2t4
×

×
[
s(D + 6)2 + (−18s − t)(D + 6) + 78s + 8t

]

(D − 2)Ds2t5

+
BoxD+6(s, t)(D − 1)(D + 1)

4s2t4
×

×
[(

(D+6)2−22(D+6)+120
)
s2−8(D−4)st+ 8t2

]

4s2t4
,

JD+6(1, 2, 3, 2; s, t) = −2BubD+6(s)(D − 1)(D + 1)(D + 3)(D − 2)2

Ds4t2
(C.50)

−2BubD+6(t)(D − 1)(D + 1)(D + 3)

(D − 4)Ds3t5
×

×
[
st(D + 6)3 +

(
2s2 − 26ts − 2t2

)
(D + 6)2

+
(
−36s2+220ts+36t2

)
(D+6)+144s2−160t2−600st

]

+
BoxD+6(s, t)(D − 1)(D + 1)((D + 6)s− 8s − 2t)(D − 2)

2s3t2
,

JD+6(1, 2, 2, 3; s, t) = JD+6(1, 3, 2, 2; s, t), (C.51)

JD+6(1, 2, 1, 4; s, t) = JD+6(1, 4, 1, 2; s, t), (C.52)

JD+6(1, 1, 1, 5; s, t) = −Bub
D+6(s)(D − 1)(D + 1)(D + 3)

6(D − 6)(D − 4)s5t4
× (C.53)

×
[
(D + 6)3s3 + 960s3 + 240ts2 − 96t2s+ 48t3

+ (D+6)2
(
2s2t−30s3

)
+ (D+6)

(
296s3−44ts2+8t2s

)]

+
BoxD+6(s, t)(D − 2)(D − 1)D(D + 1)

24t4
,
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JD+6(1, 1, 3, 3; s, t) = −Bub
D+6(s)(D − 1)(D + 3)[(D + 6)s − 8s+ 2t](D + 1)

s5t2

−Bub
D+6(t)(D − 1)(D + 3)[2s + (D + 6)t− 8t](D + 1)

s2t5

+
BoxD+6(s, t)(D − 2)(D − 1)D(D + 1)

4s2t2
, (C.54)

JD+6(1, 1, 2, 4; s, t) = −2BubD+6(s)(D − 1)(D + 3)(D + 1)

3(D − 4)s5t3
×

×
[
(D + 6)2s2 − 18(D + 6)s2 + 80s2

+2(D + 6)st− 20ts + 8t2
]

−2BubD+6(t)(D − 2)(D − 1)(D + 3)(D + 1)

3st5

+
BoxD+6(s, t)(D − 2)(D − 1)D(D + 1)

6st3
, (C.55)

JD+2(1, 1, 1, 3; s, t) =
BoxD+2(s, t)(D − 4)(D − 3)

2t2

−2BubD+2(s)(D − 3)(D − 1)[(D + 2)s − 8s + 2t]

(D − 6)s3t2
. (C.56)

C.4 Bubble and box master integrals in generic dimensions

The analytic continuation in the physical region s > 0 and t < 0 of the D = 4 − 2ǫ 1-loop

bubble yields [46]

BubD(s) =
iπD/2

(2π)D
µ2ǫ

(
eγ

4π

)ǫ cΓ
ǫ(1 − 2ǫ)

(s)−ǫ(−1)ǫ, (C.57)

BubD(t) =
iπD/2

(2π)D
µ2ǫ

(
eγ

4π

)ǫ cΓ
ǫ(1 − 2ǫ)

(−t)−ǫ. (C.58)

The bubble master integral in D + 2, D + 4 and D + 6 dimensions can be obtained in a

straightforward way starting from BubD(s) and performing first a ǫ→ (4−D)/2 shift and

then another shift to bring D to the desired number of dimensions; we have for instance

BubD+2(s) =
iπ(D+2)/2

(2π)D+2
µ2ǫ

(
eγ

4π

)ǫ cΓ s

2ǫ(1 − 2ǫ)(3 − 2ǫ)
(s)−ǫ(−1)ǫ (C.59)

for the bubble in 6 − 2ǫ dimensions.

The basis of master integrals we have used includes the 1-loop bubble and the 1-loop box

in 6 − 2ǫ dimensions [47]

BoxD+2(s, t) =
iπ(D+2)/2

(2π)D+2
µ2ǫ

(
eγ

4π

)ǫ cΓ |s|−ǫ

u(1 − 2ǫ)

{
X2

2

+ǫ

(
−X

3

3
+
Y X2

2
+ Li2(−x)X − π2X

2
− Li3(−x) + ζ(3)

)

−ǫ2
(
Y X3

3
+
Y 2X2

4
− Y 3X

6
+

1

3
π2Y X + Li3(−y)X − 1

8

(
X2 + π2

)2
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+
1

24

(
Y 2 + π2

)2
+

1

2

(
X2 + π2

)
Li2(−x) + Li4

(
−x
y

)
− Li4(−y) +

7π4

360

)

+iπ

[(
X3

6
− Y X2

2
− Li3(−x) − Li3(−y) + ζ(3)

)
ǫ2

+

(
−X

2

2
+ Y X + Li2(−x) −

π2

6

)
ǫ+X

]}
+ O(ǫ3), (C.60)

where cΓ, x, y, X and Y are defined as

cΓ =
Γ(1 + ǫ)Γ2(1 − ǫ)

Γ(1 − 2ǫ)
x =

t

s
y =

u

s
X = ln

(
− t

s

)
Y = ln

(
− u

s

)
.

(C.61)

Since the scalar box integral in D+2 = 6−2ǫ is completely finite as ǫ→ 0, it is convenient

to perform a dimensional shift of the box integrals in higher dimensions like BoxD+4(s, t)

and BoxD+6(s, t) in terms of it with these formulas

BoxD+4(s, t) = −1

u

[
st

2(D − 1)
BoxD+2(s, t) +

2

D − 2
(BubD+2(s) +BubD+2(t))

]
(C.62)

BoxD+6(s, t) = −1

u

[
st

2(D + 1)
BoxD+4(s, t) +

2

D
(BubD+4(s) +BubD+4(t))

]
. (C.63)
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[9] R. Armillis, C. Corianò and M. Guzzi, Trilinear anomalous gauge interactions from

intersecting branes and the neutral currents sector, JHEP 05 (2008) 015 [arXiv:0711.3424].

[10] P. Anastasopoulos et al., Minimal anomalous U(1)′ extension of the MSSM,

arXiv:0804.1156.

– 50 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C421%2C105
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C421%2C105
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=FPYKA%2C52%2C200
http://arxiv.org/abs/hep-th/0310001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB486%2C186
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB486%2C186
http://arxiv.org/abs/hep-ph/0004214
http://jhep.sissa.it/stdsearch?paper=11%282001%29002
http://arxiv.org/abs/hep-th/0105155
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB746%2C77
http://arxiv.org/abs/hep-ph/0510332
http://jhep.sissa.it/stdsearch?paper=07%282007%29008
http://arxiv.org/abs/hep-ph/0701010
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB789%2C133
http://arxiv.org/abs/hep-ph/0703127
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB651%2C298
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB651%2C298
http://arxiv.org/abs/hep-ph/0612140
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC55%2C629
http://arxiv.org/abs/0801.2949
http://jhep.sissa.it/stdsearch?paper=05%282008%29015
http://arxiv.org/abs/0711.3424
http://arxiv.org/abs/0804.1156


J
H
E
P
1
0
(
2
0
0
8
)
0
3
4

[11] P. Anastasopoulos, M. Bianchi, E. Dudas and E. Kiritsis, Anomalies, anomalous U(1)′s and

generalized Chern-Simons terms, JHEP 11 (2006) 057 [hep-th/0605225].

[12] J. Jaeckel, E. Masso, J. Redondo, A. Ringwald and F. Takahashi, The need for purely

laboratory-based axion-like particle searches, Phys. Rev. D 75 (2007) 013004

[hep-ph/0610203].

[13] A. De Angelis, O. Mansutti, M. Persic and M. Roncadelli, Photon propagation and the VHE

gamma-ray spectra of blazars: how transparent is really the universe?, arXiv:0807.4246.

[14] A. De Angelis, O. Mansutti and M. Roncadelli, Evidence for a new light spin-zero boson from

cosmological gamma-ray propagation?, Phys. Rev. D 76 (2007) 121301 [arXiv:0707.4312].

[15] Z. Berezhiani, L. Gianfagna and M. Giannotti, Strong CP problem and mirror world: the

Weinberg-Wilczek axion revisited, Phys. Lett. B 500 (2001) 286 [hep-ph/0009290].

[16] N.E. Adam, V. Halyo and S.A. Yost, Evaluation of the theoretical uncertainties in the Z to ll

cross sections at the LHC, JHEP 05 (2008) 062 [arXiv:0802.3251].

[17] H.-S. Lee, C. Luhn and K.T. Matchev, Discrete gauge symmetries and proton stability in the

U(1)′-extended MSSM, JHEP 07 (2008) 065 [arXiv:0712.3505].

[18] P. Langacker, The physics of heavy Z ′ gauge bosons, arXiv:0801.1345.

[19] B. Fuks, Precision predictions for Z ′ production at the LHC, arXiv:0805.2004.

[20] D. Feldman, Z. Liu and P. Nath, The Stückelberg Z ′ at the LHC: discovery potential,

signature spaces and model discrimination, JHEP 11 (2006) 007 [hep-ph/0606294].

[21] B. Fuks, M. Klasen, F. Ledroit, Q. Li and J. Morel, Precision predictions for Z ′-production at

the CERN LHC: QCD matrix elements, parton showers and joint resummation, Nucl. Phys.

B 797 (2008) 322 [arXiv:0711.0749].

[22] J. Kumar, A. Rajaraman and J.D. Wells, Probing the Green-Schwarz mechanism at the Large

Hadron Collider, Phys. Rev. D 77 (2008) 066011 [arXiv:0707.3488].

[23] A.A. Andrianov, A. Bassetto and R. Soldati, Consistent quantization of massive chiral

electrodynamics in four-dimensions, Phys. Rev. Lett. 63 (1989) 1554.

[24] A.A. Andrianov, A. Bassetto and R. Soldati, Reply to ’Quantization of massive chiral

electrodynamics reexamined.’, Phys. Rev. D 47 (1993) 4801.

[25] C. Fosco and R. Montemayor, Quantization of massive chiral electrodynamics reexamined,

Phys. Rev. D 47 (1993) 4798.

[26] C. Adam, Investigation of anomalous axial QED, Phys. Rev. D 56 (1997) 5135

[hep-th/9703130].

[27] E. Kiritsis and P. Anastasopoulos, The anomalous magnetic moment of the muon in the

D-brane realization of the standard model, JHEP 05 (2002) 054 [hep-ph/0201295].

[28] A. Djouadi, G. Moreau and R.K. Singh, Kaluza-Klein excitations of gauge bosons at the

LHC, Nucl. Phys. B 797 (2008) 1 [arXiv:0706.4191].

[29] P. Federbush, The axial anomaly revisited, hep-th/9606110.

[30] A.D. Dolgov and V.I. Zakharov, On conservation of the axial current in massless

electrodynamics, Nucl. Phys. B 27 (1971) 525.

– 51 –

http://jhep.sissa.it/stdsearch?paper=11%282006%29057
http://arxiv.org/abs/hep-th/0605225
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C013004
http://arxiv.org/abs/hep-ph/0610203
http://arxiv.org/abs/0807.4246
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C121301
http://arxiv.org/abs/0707.4312
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB500%2C286
http://arxiv.org/abs/hep-ph/0009290
http://jhep.sissa.it/stdsearch?paper=05%282008%29062
http://arxiv.org/abs/0802.3251
http://jhep.sissa.it/stdsearch?paper=07%282008%29065
http://arxiv.org/abs/0712.3505
http://arxiv.org/abs/0801.1345
http://arxiv.org/abs/0805.2004
http://jhep.sissa.it/stdsearch?paper=11%282006%29007
http://arxiv.org/abs/hep-ph/0606294
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB797%2C322
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB797%2C322
http://arxiv.org/abs/0711.0749
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD77%2C066011
http://arxiv.org/abs/0707.3488
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C63%2C1554
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD47%2C4801
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD47%2C4798
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD56%2C5135
http://arxiv.org/abs/hep-th/9703130
http://jhep.sissa.it/stdsearch?paper=05%282002%29054
http://arxiv.org/abs/hep-ph/0201295
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB797%2C1
http://arxiv.org/abs/0706.4191
http://arxiv.org/abs/hep-th/9606110
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB27%2C525


J
H
E
P
1
0
(
2
0
0
8
)
0
3
4

[31] W. Bernreuther et al., Two-loop QCD corrections to the heavy quark form factors: anomaly

contributions, Nucl. Phys. B 723 (2005) 91 [hep-ph/0504190].

[32] M. Knecht, S. Peris, M. Perrottet and E. de Rafael, New nonrenormalization theorems for

anomalous three point functions, JHEP 03 (2004) 035 [hep-ph/0311100].

[33] L. Rosenberg, Electromagnetic interactions of neutrinos, Phys. Rev. 129 (1963) 2786.

[34] F. Jegerlehner and O.V. Tarasov, Explicit results for the anomalous three point function and

non-renormalization theorems, Phys. Lett. B 639 (2006) 299 [hep-ph/0510308].

[35] N.I. Usyukina and A.I. Davydychev, An approach to the evaluation of three and four point

ladder diagrams, Phys. Lett. B 298 (1993) 363.

[36] A. Czarnecki, W.J. Marciano and A. Vainshtein, Refinements in electroweak contributions to

the muon anomalous magnetic moment, Phys. Rev. D 67 (2003) 073006 [Erratum ibid. 73

(2006) 119901] [hep-ph/0212229].

[37] M. Knecht, S. Peris, M. Perrottet and E. De Rafael, Electroweak hadronic contributions to

gµ − 2, JHEP 11 (2002) 003 [hep-ph/0205102].

[38] T.V. Kukhto, E.A. Kuraev, Z.K. Silagadze and A. Schiller, The dominant two loop

electroweak contributions to the anomalous magnetic moment of the muon, Nucl. Phys. B

371 (1992) 567.

[39] A. Vainshtein, Perturbative and nonperturbative renormalization of anomalous quark

triangles, Phys. Lett. B 569 (2003) 187 [hep-ph/0212231].

[40] B.A. Kniehl and J.H. Kuhn, QCD corrections to the Z decay rate, Nucl. Phys. B 329 (1990)

547.
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